《高光谱图像信息提取》阅读笔记 / 高光谱入门

本文介绍了高光谱图像信息提取的关键技术,包括噪声评估、数据降维方法(如PCA)、混合像元分解以及图像分类。数据降维通过特征提取和波段选择来压缩数据并保留重要特征。混合像元分解涉及端元提取和丰度反演,而图像分类利用光谱和空间特征进行地物识别。文章还讨论了目标探测和异常探测的不同算法策略。
摘要由CSDN通过智能技术生成

目录

前言

第1章 高光谱图像信息提取概述

1.1 高光谱遥感

1.2 高光谱图像信息提取现状

1.2.1 噪声评估与数据降维方法

1.2.2 混合像元分解方法

1.2.3 图像分类方法

1.2.4 目标探测与异常探测方法


前言

与传统光学遥感技术相比,高光谱遥感图像具有波段连续性光谱可分性等特点。

高光谱图像处理与信息提取是高光谱遥感领域的核心研究内容。一方面,通过图像处理和信号分析可以从可分辨和可识别角度对高光谱图像进行光谱特征和空间特征提取,进而实现高光谱图像的分析和解释;另一方面,高光谱图像连续的光谱段和空间非局部相似性使得数据在空间维度和光谱维度都存在一定的相似性和冗余性,同时,高光谱图像在获取过程中由于成像技术限制会受到噪声干扰,由此必须考虑图像噪声、休斯现象和维数灾难等问题,因而对高光谱图像修复和特征优化提取也是信息处理的一部分内容。

第1章 高光谱图像信息提取概述

1.1 高光谱遥感

1、一些名词

1)像元

亦称像素点或像元点。即影像单元(picture element)。是组成数字化影像的最小单元。是构成遥感数字图像的基本单元,是遥感成像过程中的采样点。

2)端元

端元只包含一种地物信息,一般的像元都为混合像元,包括多种地物,在进行混合像元分解的时候,可以对一个像元中包括的几种端元进行定量描述,求得每个像元中几种端元在这个像元中的面积百分比,即端元的丰度。

3)端元和像元的关系

下图中大的方框代表一个遥感图像的像元 ,但像元明显是又由A,B,C,D混合而成,其中A,B,C,D则可能分别代表地球表面的土地,树木,水和建筑物。但是由于分辨率的问题,不能将其进行详细区分,只能混合在一个像元中,所以此时的像元则是由此四个端元构成。而每个端元在像元中所占的比成为丰度。

4)视场角

视场角的大小决定了光学仪器的视野范围。视场角又可用FOV表示,其与焦距的关系如下:像高 = EFL*tan (半FOV);EFL为焦距;FOV为视场角。

5)瞬时视场角

瞬时视场角(Instantaneous Field Of View,IFOV),是指传感器内单个探测元件的受光角度或观测视野,它决定了在给定高度上瞬间观测的地表面积,这个面积就是传感器所能分辨的最小单元。IFOV越小,最小可分辨单元越小,图像空间分辨率越高。(因为IFOV小,你看到的图像中心就大,看的清楚,所以图像空间分辨率就高)IFOV取决于传感器光学系统和探测器的大小。(卫星的空间分辨率与卫星的高度有关,卫星高度越高,分辨率越低,而且与卫星视角有关,视角越倾斜,观测面积越大,分辨率就差。)

2、书中的句子

  • 高光谱图像信息提取技术的研究主要包括数据降维、混合像元分解、图像分类和目标探测等方向。

  • 一个M行、N列、L波段的高光谱图像立方体第i行、第j列的像元r(i,j)是一个包含L个分量的向量,r(i,j,k)为第i行、第j列的像元在第k个波段的反射率(或辐亮度)。

  • R^L 称为高光谱图像的特征空间。

1.2 高光谱图像信息提取现状

1.2.1 噪声评估与数据降维方法

1、噪声评估

1)背景

高光谱图像波段较多、数据量大、存在冗余,为图像处理带来压力。因此需要进行数据降维,以压缩数据量和提高运算效率,同时可以简化和优化图像特征,并最大限度保留信号和压缩噪声。

由于成像光谱仪波段通道较密而造成光成像能量不足,相对于全色图像,高光谱图像的信噪比提高比较困难。在图像数据获取过程中,地物光谱特征在噪声的影响下容易产生“失真”。如对某一吸收特征进行探测,则要求噪声水平比吸收深度要低至少一个数量级。所以噪声的精确估计很有必要。

2)噪声评估

在光学遥感中,图像噪声主要由周期性噪声随机噪声构成。周期性噪声可以由频域变换滤波有效地消除,而随机噪声的影响一直存在,这种随机噪声一般认为是与信号无关的加性噪声。

(P5-P6介绍了一些噪声评估的方法)

2、数据降维方法

1)光谱特征提取

高光谱数据降维技术主要是利用低纬数据来有效表达高维数据信息,在压缩数据量的同时为地物信息提取提供优化的特征。高光谱数据降维方法主要分为两类:特征提取波段选择

光谱特征提取(spectral feature extraction)特征提取方法首先对原始高光谱数据进行数学变换,然后选取变换后的前n个特征作为降维之后的n个成分,实现数据降维。

主成分分析(principle component analysis,PCA)是一种无监督的降维方法,主要作用是压缩与简化。(b站大佬讲解视频:用最直观的方式告诉你:什么是主成分分析PCA_哔哩哔哩_bilibili

  • 目标:找坐标系,只保留一个轴的时候(二维降到一维),信息保留最多。

  • 怎么样最好:找到数据分布最分散的方向(方差最大),作为主成分(坐标轴) 。

  • PCA的操作:a. 首先去中心化(把坐标原点放在数据中心)

    b. 找坐标系找到方差最大的方向

  • PCA——3维降维2维

       找到一个二维平面,把数据点投影到平面上,让数据在这个平面上分布的方差最大。

2)特征选择

光谱特征选择(spectral feature selection)是针对特定对象选择光谱特征空间中的一个子集,这个子集是一个缩小了的光谱特征空间,但它包括了该对象的主要特征光谱,并在一个含有多种目标对象的组合中,该子集能够最大限度地区别于其他地物

特征选择同样是一种非常重要的高光谱数据降维方法。它的目的选择原始高光谱数据的一个波段子集,这个波段子集能够尽量多地保留原始数据的主要光谱特征或者提高原始数据的地物类别可分性,也就是说要按照一定的标准选择一个最优的波段组合。选择波段组合的标准也称为评价函数或者目标函数。根据目标函数的计算是否需要先验的地物光谱特征信息,可将波段选择(band selection,BS)算法分为监督的和非监督的两类。

当地物类别信息是已知的,可以用监督的波段选择算法选择能够最大程度保留这些类别信息的波段子集;如果没有这些先验的地物类别信息,则可用非监督的波段选择算法选择信息量最大的波段子集。

1.2.2 混合像元分解方法

  • 混合像元现象的产生当一个像元对应的瞬时视场内存在多种不同的地物类型,该像元的光谱特征则由这些地物的光谱信息共同构成,由此产生了混合像元现象。由于遥感器空间分辨率的制约,高光谱图像中普遍存在混合像元问题,这是制约分类精度提高和目标探测准确率的重要因素。

  • 高光谱图像的混合像元分解的两个基本目的

    1)端元提取(endmember extraction):确定组成混合像元的基本地物。

    2)丰度反演(abundance inversion):计算各个基本地物在混合像元中所占比例。

  • 为了实现混合像元分解,要利用数学模型描述混合像元形成的物理过程。根据物理过程抽象程度不同,高光谱图像光谱混合模型可以分为:

    1)线性光谱混合模型(linear spectral mixing model,LSMM)

    2)非线性光谱混合模型(nonlinear spectral mixing model,NLSMM)

    地物的混合和物理分布的空间尺寸大小决定了非线性的程度,大尺度的光谱混合通常被认为是一种线性混合,而小尺度的物质混合则是非线性。

 

1、线性光谱混合模型

(1)线性光谱混合模型假设太阳入射辐射只与一种地物表面发生作用,每个光子仅能“看到”一种物质并将其信号叠加到像元光谱中。表示为:

\boldsymbol{x}=\sum_{j=1}^{m} \alpha_{j} \boldsymbol{e}_{j}+\boldsymbol{\varepsilon}

式中,像元x由m个端元ej组成;aj为ej在x中所占比例(丰度);ε为模型误差项。

(2)根据端元存在的情况,LSMM模型求解算法可分为纯像元算法最小体积算法前者假设图像中每一个纯地物都对应一个端元,而后者假设图像中至少一个纯地物不存在端元。

2、非线性光谱混合模型

(1)非线性光谱混合模型在线性模型中增加了光子与物体接触时的能量传递过程和光子在不同物体之间的多重散射,可以分为专用模型和通用模型。

  • 专用模型:主要依据辐射传输理论,并且针对特定的地物类型。

  • 通用模型:不针对特定的地物类型,避免引入复杂的物理过程。

(2)与建立NLSMM相比,完成非线性光谱解混,即求解NLSMM则更为困难。除了最小的最小二乘法之外,主要包括基于贝叶斯估计、神经网络、核函数和流形学习等方法。

  • 神经网络模型已经被广泛应用于混合像元分解过程。

  • 核函数是一种有效的非线性数据分析方法,不需要预先确定非线性映射形式,即可将高维空间的内积转化为核函数运算。

  • 流形学习旨在挖掘高维数据内在的低纬结构,在高光谱遥感图像分类方面被应用得较多。

3、正态组分模型

(1)正态组分模型(normal composition model,NCM)将高光谱图像的每个像元x描述为由端元线性混合而成的随机变量。可表达为:

\boldsymbol{x}=\sum_{m=1}^{M} \alpha_{m} \boldsymbol{\varepsilon}_{m}

式中,M是端元个数;εm是第m个正态分布的端元变量;am是对应于第m个端元的丰度值,并且满足约束条件丰度“非负”约束和”和为一“约束。

(2)NCM模型假设高光谱图像中每一个像元光谱是由多个正态分布的变量(即端元)随机混合组成,每一个正态分布对应一种地物类别,式中正态分布的参数之一协方差矩阵表征对应地物的光谱变异。

4、NCM和LSMM的关系:

严格来讲,NCM是LSMM的一种扩展,但NCM是被认为是一种能考虑端元变异对混合像元分解影响的模型LSMM认为混合像元可以由端元的线性组合表示,在这里,端元、混合像元都是些具有确定值的向量,因此LMSS属于确定性分析。而NCM引入随机分析,认为由于现实中各种因素的影响(光谱变异、测量误差和大气校正误差等),即使对同一地物的每一次测量得到的光谱值都有波动,光谱特征应该视为一个随机变量,因此NCM模型中端元和混合像元都是随机向量。这种随机变量原则上可以以任何概率分布呈现,但为了不增加模型的复杂性,NCM假设它们为正态分布,仅用均值和方差两个参数就可完全描述这种分布。概括的说,NCM认为混合像元是由端元线性混合产生,并且光谱特征是个呈正态分布的随机变量。当所以随机变量方差均为零时,则该模型退化为LSMM,所以LSMM也可视为NCM的一种特殊情况。

1.2.3 图像分类方法

利用高光谱图像进行精细地物分类是高光谱遥感技术应用的核心内容之一,分类结果是专题制图的基础数据。高光谱图像分类中主要面临Hughes现象、维数灾难和特征空间中数据非线性分布等问题。同时,传统算法多是以像元作为基本单元进行分类,并未考虑遥感图像的空间域特征,从而使得算法无法有效处理同物异谱问题,分类结果中地物内部易出现许多噪点。

1、高光谱图像特征的表达方式

高光谱图像数据将地物光谱信息和图像信息融为一体(立方体)。

高光谱图像核心问题的解决方案在于两方面:

1)特征挖掘:特征是高光谱图像分类的重要依据,通过变换和提取得到不同地物类别具有最大差异性的特征,能够极大提高感兴趣类别的可分性程度

2)分类器设计利用适合的分类器有利于发现复杂数据的内涵,如非线性特征等,从而提高高光谱图像分类的精度。

2、高光谱图像分类体系及发展

高光谱图像分类方法按照分类器设计不同可划分为:监督法、非监督法、半监督法、混合法、集成法和多级法六大类。

(1)基于光谱特征分类( P16)

① 谱曲线分析,即利用地物物理光学性质来进行地物识别。如:光谱夹角填图。

② 谱特征空间分析,主要分为统计模型分类方法与非参数分类方法。如:最大似然分类法;决策树、神经网络、混合像元分类、基于核方法的分类;半监督分类、主动学习……

③ 其他高级分类器。模式识别、智能化、仿生学为基础引入图像分类。

(2)整合空间——光谱特征的图像分类

整合空间相关性与光谱特征分类

图像相邻像元总存在着相互联系,称为空间相关性。主要由于遥感器在对地面上一个像元大小的地物成像过程中,同时吸收了周围地物反射的一部分能量。

这种分类可以分为光谱-空间特征同步处理和后处理两种策略:

a. 同步处理将特征空间与光谱特征提取并融合后合并为高维向量进行归一化处理,直接输入分类器得到结果。也可以利用支持向量机(把两种数据区分开 支持向量机(SVM)_侬本多情。的博客-CSDN博客_支持向量机)将两种特征变换到不同的核空间中,通过多核复合进行分类。

b. 后处理:在光谱分类处理基础上再利用图像的空间特性对光谱处理结果进行重排列和重定义。

整合空间相关性的优点:通过像元间的相关特性降低光谱分类中由于同类地物光谱异质性造成的分类结果不确定性,减少分类中的噪声影响,使结果更有利于判读分析。

面向对象的图像分类

面向对象的图像分类OBIC(object-based image classification)将分类的最基本单位从像元转换到图像对象,也称为图斑对象。图斑对象定义为具有空间相关性的像元聚合成形状与光谱性质同质性的区域。超像元是一种尺度介于像元与对象之间的图像过分割结果。

整合纹理特征与光谱特征分类

纹理是物体表面的属性所造成的,它可以通过纹理基元(texton)空间组织或布局来描述。对于给定的像元,如果能够准确提取它所属的结构纹理特征,对于判断光谱差异性很小而表面结构不同的地物来说,具有较显著的区分效果。方法分为四类:结构分析法、统计分析法、模型化方法信号处理法。

(3)多特征融合分类

多特征融合将纹理、空间相关性、光谱特征以及其他特征融合用于高光谱图像分类。

1.2.4 目标探测与异常探测方法

  • 高光谱图像目标探测旨在基于光谱特征,从图像背景中将感兴趣的目标提取出来。

  • 高光谱图像中目标存在主要包括3种类型:

    1)小存在概率目标:指图像中分布很少的弱信息目标;

    2)低出露目标:指目标在图像中广泛分布,但被其他地物所遮挡,仅有少量表面暴露,如草原上依稀露出的岩石和树丛中隐藏的车辆编队等。

    3)亚像元级目标:指尺寸小于遥感器空间分辨率的目标。

  • 目标探测算法可被分为两类:

    1)监督算法:高光谱图像目标探测通常指的是监督算法,即需要已知被探测目标的光谱信息(一个数据或多个光谱数据构成的集合)

    2)非监督算法:没有光谱的先验知识。非监督算法通常被称为异常探测

  • 4
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 对于高光谱图像分割和特征提取这个问题,我能提供一些信息。高光谱图像分割是一种计算机视觉技术,它可以提取图像中的目标区域,并将它们从背景中分离出来。特征提取是指从图像中提取出有价值信息的过程,比如颜色、纹理等信息。这些信息可以用于后续的分类和分析工作。 ### 回答2: 高光谱图像分割是指将高光谱图像中的像素划分为具有相似光谱特性的不同物体或区域的过程。这一过程主要包括预处理、特征提取和图像分割三个步骤。 首先,预处理是指对高光谱图像进行去噪和增强等操作,目的是提高图像质量和辨识度。常用的预处理方法包括平滑、噪声滤波和对比度增强等。 接下来,特征提取是从高光谱图像中提取表征不同物体或区域的有意义信息的过程。这一步骤可以通过计算像素的光谱特征、空间特征和纹理特征等来实现。常用的特征提取方法包括主成分分析、线性判别分析和小波变换等。 最后,图像分割是将高光谱图像中的像素划分为不同的物体或区域的过程。这一步骤可以通过基于像素相似度、基于区域生长和基于图割等方法来实现。常用的图像分割算法包括基于阈值、基于聚类和基于边缘的方法。 总的来说,高光谱图像分割和特征提取是从高光谱图像中获取有用信息的重要步骤。通过预处理,可以提高图像质量;通过特征提取,可以提取有意义的信息;通过图像分割,可以将图像中的不同物体或区域划分开来。这些步骤的综合应用可以为高光谱图像的后续分析和应用提供基础。 ### 回答3: 高光谱图像分割和特征提取高光谱遥感图像处理的两个核心步骤。 高光谱图像分割是指将高光谱图像根据像素的特征进行分类或分割的过程。该过程旨在将图像中的不同区域进行区分,以便进行后续的分析和处理。常用的高光谱图像分割方法包括基于阈值、基于聚类和基于分类器等。在基于阈值的方法中,通过设定合适的阈值将图像中的像素分为不同的类别。基于聚类的方法则通过将相似的像素聚集在一起形成不同的类别。基于分类器的方法则利用机器学习算法根据已有的样本对图像进行分类。高光谱图像分割能够提取出图像中的不同物体或景观,为后续的特征提取和应用提供基础。 特征提取则是在高光谱图像分割的基础上,从每个分割区域中提取出有用的特征信息。高光谱图像的每个像素通常包含数百个波段的信息,提取出有效的特征可以更好地描述图像中的物体或景观。常用的特征提取方法包括统计特征、纹理特征和形状特征等。统计特征可以通过计算每个分割区域的均值、方差等统计信息来描述区域的灰度分布。纹理特征可以通过纹理分析方法如灰度共生矩阵等来描述区域的纹理特性。形状特征则是通过计算区域的形状参数如周长、面积等来描述区域的形状特点。特征提取可以有效提取图像中的有用信息,为后续的分类、识别和应用提供基础。 综上所述,高光谱图像分割和特征提取高光谱遥感图像处理中关键的两个步骤,能够提取出图像中不同区域和物体的信息,并为后续的分析、分类和识别等应用提供基础。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值