AIGC面经大全(持续更新)

目录

DDPM算法原理部分:

DDIM算法原理部分: 

 ⾼阶采样⽅案:

特征编码篇:

Stable Diffusion篇: 

 SDXL篇:

 ⼤模型微调篇:

控制模型篇:

 适配器篇:


DDPM算法原理部分:

简述DDPM的算法流程:

  1. 初始化:从带噪声的图像开始。
  2. 正向扩散:逐步向数据添加高斯噪声,直到数据完全转化为无结构的噪声。
  3. 反向去噪:通过模型预测并逐渐去掉每一步加入的噪声,还原得到无噪声的图像。
  4. 训练:使用反向传播算法更新模型参数,以最小化正向和反向过程之间的差异。
  5. 测试:对新的高噪声图像应用训练好的模型进行去噪。

实现DDPM是否需要什么条件:

  1. 马尔可夫链:DDPM使用马尔可夫链来描述数据的扩散过程。马尔可夫链是一个随机过程,具有无记忆性,即在给定当前状态的情况下,未来的状态只依赖于当前状态。
  2. 微小变化:DDPM通过逐步添加微小的高斯噪声来扩散数据。这些微小的变化是在数据中引入随机性的关键步骤。
  3. 高斯噪声变化:DDPM使用高斯噪声来模拟数据的扩散过程。高斯噪声是一种常见的随机噪声,也称为正态分布噪声。

为什么DDPM加噪声的幅度是不⼀致的?

前期加噪少是为了保持数据结构的完整性,后期加噪多是为了加速扩散过程,使得模型能够更快地从噪声中恢复出清晰的数据。

DDPM预测噪声还是预测当前分布?

预测噪声,预测分布只是中间过程

DDIM算法原理部分: 

DDIM是怎么实现加速采样的?

DDIM通过保证DDPM的三项前向条件不变:前向⾼斯噪声+⻢尔可夫链,实现逆向递推公式优化,减少逆向推理步骤

DDIM是不是确定性⽣成,为什么 

是确定性⽣成。因为在逆向去噪声过程中,DDIM的逆推公式,将随机噪声的部分置为0

 

Score-Based-diffusion-model

提供了⼀种解释扩散模型的等价⽅式,其中降噪过程可以看作是沿着分数(梯度)前进

 ⾼阶采样⽅案:

是否了解DPM++等加速采样⽅案

通过ODE对扩散模型进⾏建模,通过解析解的形式解构扩散模型求解步骤

特征编码篇:

介绍⼀下CLIP编码ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值