寿险精算知识笔记
寿险精算是一门结合数学、统计学、金融学和保险学的综合性学科,通过数学模型和计算方法评估寿险产品的风险、定价、准备金提取和利润测试等关键环节。以下是寿险精算的详细总结。
一、寿险精算的基础概念
1.1 寿险产品类型
寿险产品主要包括以下几种类型:
- 终身寿险(Whole Life Assurance):提供终身保障,保险金在被保险人死亡时支付。
- 定期寿险(Term Assurance):在特定期限内提供死亡保障,若被保险人在保险期间内死亡,则支付保险金。
- 生存保险(Pure Endowment):若被保险人生存至保险期满,则支付保险金。
- 生死两全保险(Endowment Assurance):结合定期寿险和生存保险,无论被保险人在保险期间内死亡还是生存至期满,均支付保险金。
1.2 数学基础
寿险精算依赖于概率论、数理统计和利息理论。其中,货币的时间价值是核心概念之一,即未来的资金需要通过贴现因子 v = 1 ( 1 + i ) v = \frac{1}{(1+i)} v=(1+i)1转换为现值,其中 i i i为年利率。
二、生命表与生存模型
2.1 生命表
生命表是寿险精算的基础工具,用于描述人群的生存和死亡规律。
- 生命表函数: l x l_x lx 表示 x x x岁存活人数,通过 l x l_x lx 可以计算生存概率 p x = l x + t l x p_x = \frac{l_{x+t}}{l_x} px=lxlx+t 和死亡概率 q x = 1 − p x q_x = 1 - p_x qx=1−px。
- 选择死亡率与终极死亡率:选择死亡率考虑投保时的健康状况,而终极死亡率仅与年龄相关。
2.2 未来寿命
- 未来寿命的分布:对于已活到 x x x 岁的人,其未来寿命 T ( x ) T(x) T(x) 的生存函数为 S T ( x ) ( t ) = t p x S_{T(x)}(t) = {}_tp_x ST(x)(t)=tpx,表示 x x x 岁的人至少能活到 x + t x+t x+t岁的概率。
- 未来寿命的期望与方差:期望未来寿命 e x = E [ T ( x ) ] e_x = \mathbb{E}[T(x)] ex=E[T(x)],方差 Var [ T ( x ) ] \text{Var}[T(x)] Var[T(x)]可通过积分计算。
三、保险金的期望现值(EPV)
3.1 终身寿险
- 死亡年度末给付:保险金的期望现值 A x = ∑ k = 0 ∞ v k + 1 ⋅ k q x A_x = \sum_{k=0}^{\infty} v^{k+1} \cdot {}_kq_x Ax=∑k=0∞vk+1⋅kqx。
- 死亡时立即给付:期望现值 A ‾ x = ∫ 0 ∞ v t ⋅ f T ( x ) ( t ) d t \overline{A}_x = \int_0^{\infty} v^t \cdot f_{T(x)}(t) \, dt Ax=∫0∞vt⋅fT(x)(t)dt。
3.2 定期寿险
- 死亡年度末给付: A 1 x : n ‾ ∣ = ∑ k = 0 n − 1 v k + 1 ⋅ k q x A_{1x:\overline{n}|} = \sum_{k=0}^{n-1} v^{k+1} \cdot {}_kq_x A1x:n∣=∑k=0n−1vk+1⋅kqx。
- 死亡时立即给付: A ‾ 1 x : n ‾ ∣ = ∫ 0 n v t ⋅ f T ( x ) ( t ) d t \overline{A}_{1x:\overline{n}|} = \int_0^n v^t \cdot f_{T(x)}(t) \, dt A1x:n∣=∫0nvt⋅fT(x)(t)dt。
3.3 生存保险
- 生存至保险期满给付: A x : n ‾ ∣ = v n ⋅ n p x A_{x:\overline{n}|} = v^n \cdot {}_np_x Ax:n∣=vn⋅npx。
3.4 生死两全保险
- 期望现值: A x : n ‾ ∣ = A 1 x : n ‾ ∣ + A x : 1 ‾ ∣ n A_{x:\overline{n}|} = A_{1x:\overline{n}|} + A_{x:\overline{1}|n} Ax:n∣=A1x:n∣+Ax:1∣n,结合定期寿险和生存保险。
四、保费计算
4.1 纯保费
纯保费是基于保险金的期望现值计算的,确保保险公司在长期收支平衡。
- 定期寿险: P = ∑ t = 1 n v t ⋅ q x ⋅ A P = \sum_{t=1}^{n} v^t \cdot q_x \cdot A P=∑t=1nvt⋅qx⋅A,其中 A A A为给付金额。
- 终身寿险: P = ∑ t = 1 ∞ v t ⋅ q x ⋅ A P = \sum_{t=1}^{\infty} v^t \cdot q_x \cdot A P=∑t=1∞vt⋅qx⋅A。
4.2 毛保费
毛保费在纯保费基础上加上附加费用,以覆盖保险公司的运营成本和利润。
五、准备金计算
5.1 理论责任准备金
理论责任准备金用于确保保险公司能够履行未来的保险责任。
- 未来法:计算未来保险责任的现值减去未来保费的现值。
- 过去法:基于已收取的保费和已发生的保险责任计算准备金。
六、利润测试(Profit Testing)
6.1 利润测试的基本概念
利润测试是寿险精算中用于评估保险产品盈利能力的重要工具,通过模拟保险产品在不同假设下的现金流,计算保险公司的利润和股东回报率。
6.2 利润测试的步骤
-
设定假设条件:
- 死亡率假设:基于生命表或经验数据设定未来死亡率。
- 利率假设:设定未来投资收益率,通常包括保证利率(guaranteed rate)和预期利率(projected rate)。
- 费用假设:包括初始费用、年度管理费用、退保费用等。
- 退保率假设:设定保单持有人退保的概率。
- 通胀假设:考虑通货膨胀对保费和费用的影响。
-
现金流的计算:
- 保费收入:根据保费计算公式和缴费期限计算。
- 保险金支出:根据保险金的期望现值和死亡率计算。
- 投资收益:根据投资收益率和准备金余额计算。
- 运营费用:包括初始费用、年度管理费用等。
-
利润计算:
- 利润贡献:保费收入 + 投资收益 - 保险金支出 - 运营费用。
- 股东回报率(SRR):通过利润贡献与股东权益的比率计算。
- 内部收益率(IRR):通过现金流的净现值(NPV)为零时的折现率计算。
6.3 利润测试的数学公式
假设某寿险产品在 t t t年的现金流为 C F t CF_t CFt,其中:
- P t P_t Pt表示 t t t 年的保费收入,
- B t B_t Bt 表示 t t t年的保险金支出,
- I t I_t It 表示 t t t年的投资收益,
- E t E_t Et表示 t t t 年的运营费用。
则
t
t
t 年的利润贡献为:
Profit Contribution
t
=
P
t
+
I
t
−
B
t
−
E
t
\text{Profit Contribution}_t = P_t + I_t - B_t - E_t
Profit Contributiont=Pt+It−Bt−Et
股东回报率(SRR)可以表示为:
SRR
=
∑
t
=
1
n
Profit Contribution
t
Shareholder Equity
\text{SRR} = \frac{\sum_{t=1}^{n} \text{Profit Contribution}_t}{\text{Shareholder Equity}}
SRR=Shareholder Equity∑t=1nProfit Contributiont
内部收益率(IRR)是满足以下方程的折现率
r
r
r:
∑
t
=
1
n
Profit Contribution
t
(
1
+
r
)
t
=
0
\sum_{t=1}^{n} \frac{\text{Profit Contribution}_t}{(1 + r)^t} = 0
t=1∑n(1+r)tProfit Contributiont=0
七、风险评估与管理
7.1 风险类型
- 死亡率风险:实际死亡率与假设死亡率的偏差。
- 利率风险:实际投资收益率与假设利率的偏差。
- 退保风险:保单持有人提前退保导致的现金流变化。
- 通胀风险:通货膨胀对保费和保险金的实际购买力的影响。
- 长寿风险:被保险人实际寿命超过预期寿命导致的保险金支出增加。
7.2 风险评估方法
- 敏感性分析:通过改变假设条件(如死亡率、利率、退保率等),观察利润和准备金的变化。
- 蒙特卡洛模拟:通过随机模拟各种可能的未来情景,评估风险的概率分布。
- 风险价值(Value at Risk, VaR):计算在一定置信水平下,保险公司可能面临的最大损失。
7.3 风险管理策略
- 再保险:将部分风险转移给再保险公司,降低自身风险暴露。
- 资产配置:通过合理配置投资组合,降低利率风险和通胀风险。
- 产品设计:设计灵活的产品条款,如可调整保费、可变保险金等,以应对风险变化。
八、精算模型与软件工具
8.1 精算模型
- 确定性模型:假设未来事件(如死亡、利率等)按照固定的模式发展,计算保险金的期望现值和保费。
- 随机模型:考虑未来事件的不确定性,通过随机模拟生成多种可能的结果,评估风险和利润。
8.2 精算软件
- Prophet:由 Milliman 开发的精算软件,广泛用于寿险精算和利润测试。
- MoSes:由 RGA 开发的精算软件,支持多种寿险产品的建模和分析。
- Excel:虽然不是专业的精算软件,但许多精算师仍使用 Excel 进行简单的计算和初步分析。
九、国际精算标准与法规
9.1 国际精算标准(IAS)
国际精算协会(IAA)制定了一系列国际精算标准(IAS),为全球精算师提供了统一的指导原则。这些标准涵盖了精算假设的设定、准备金的计算、利润测试等方面。
9.2 各国精算法规
不同国家和地区根据自身的保险市场和监管需求,制定了相应的精算法规。例如:
- 中国:中国保险行业协会和中国精算师协会制定了《中国寿险精算规定》,对寿险产品的定价、准备金提取等进行了详细规定。
- 美国:美国精算师协会(SOA)和美国保险监督官协会(NAIC)制定了相关精算法规和标准。
- 欧洲:欧盟的偿付能力 II(Solvency II)框架对保险公司的资本要求和风险评估提出了严格要求。
十、未来趋势与挑战
10.1 技术进步
- 大数据与人工智能:通过大数据分析和机器学习算法,精算师可以更准确地预测死亡率、退保率等风险因素。
- 区块链技术:区块链的去中心化和不可篡改特性可以用于保险合同的管理和风险记录,提高透明度和安全性。
10.2 市场变化
- 低利率环境:长期低利率环境对寿险公司的投资收益和准备金计算提出了挑战。
- 人口老龄化:全球人口老龄化加剧,长寿风险成为寿险精算的重要关注点。
10.3 监管环境变化
- 偿付能力监管:各国监管机构加强了对保险公司偿付能力的监管,要求精算师更准确地评估风险和计算准备金。
- 消费者保护:监管机构更加注重消费者权益保护,要求寿险产品的设计和定价更加透明、公平。
十一、案例分析
11.1 案例背景
假设某保险公司推出一款定期寿险产品,保额为 100 万元,保险期限为 20 年,缴费期限为 10 年,年利率为 5%。死亡率假设采用标准生命表。
11.2 保费计算
-
纯保费计算:
- 假设死亡率 q x q_x qx 为 0.001(仅为示例)。
- 保险金的期望现值 A 1 x : 20 ‾ ∣ = ∑ k = 0 19 v k + 1 ⋅ q x + k A_{1x:\overline{20}|} = \sum_{k=0}^{19} v^{k+1} \cdot q_{x+k} A1x:20∣=∑k=019vk+1⋅qx+k。
- 计算得 A 1 x : 20 ‾ ∣ ≈ 0.02 A_{1x:\overline{20}|} \approx 0.02 A1x:20∣≈0.02。
- 纯保费 P = A 1 x : 20 ‾ ∣ ⋅ 100 ∑ k = 0 9 v k + 1 ⋅ p x + k ≈ 0.02 × 100 ÷ 7.72 = 0.26 P = \frac{A_{1x:\overline{20}|} \cdot 100}{\sum_{k=0}^{9} v^{k+1} \cdot p_{x+k}} \approx 0.02 \times 100 \div 7.72 = 0.26 P=∑k=09vk+1⋅px+kA1x:20∣⋅100≈0.02×100÷7.72=0.26万元。
-
毛保费计算:
- 假设附加费用为纯保费的 20%。
- 毛保费 P gross = P × ( 1 + 0.20 ) = 0.26 × 1.20 = 0.312 P_{\text{gross}} = P \times (1 + 0.20) = 0.26 \times 1.20 = 0.312 Pgross=P×(1+0.20)=0.26×1.20=0.312 万元。
11.3 准备金计算
-
未来法:
- 假设在第 5 年末计算准备金。
- 未来保险责任的现值 Future Liabilities = ∑ t = 6 20 v t − 5 ⋅ q x + 5 ⋅ 100 \text{Future Liabilities} = \sum_{t=6}^{20} v^{t-5} \cdot q_{x+5} \cdot 100 Future Liabilities=∑t=620vt−5⋅qx+5⋅100。
- 未来保费收入的现值 Future Premiums = ∑ t = 6 10 v t − 5 ⋅ P gross \text{Future Premiums} = \sum_{t=6}^{10} v^{t-5} \cdot P_{\text{gross}} Future Premiums=∑t=610vt−5⋅Pgross。
- 准备金 V 5 = Future Liabilities − Future Premiums V_5 = \text{Future Liabilities} - \text{Future Premiums} V5=Future Liabilities−Future Premiums。
-
过去法:
- 已收取的保费现值 Past Premiums = ∑ t = 1 5 v 5 − t ⋅ P gross \text{Past Premiums} = \sum_{t=1}^{5} v^{5-t} \cdot P_{\text{gross}} Past Premiums=∑t=15v5−t⋅Pgross。
- 已支付的保险金现值 Past Claims = ∑ t = 1 5 v 5 − t ⋅ q x + t − 1 ⋅ 100 \text{Past Claims} = \sum_{t=1}^{5} v^{5-t} \cdot q_{x+t-1} \cdot 100 Past Claims=∑t=15v5−t⋅qx+t−1⋅100。
- 准备金 V 5 = Past Premiums − Past Claims V_5 = \text{Past Premiums} - \text{Past Claims} V5=Past Premiums−Past Claims。
11.4 利润测试
-
假设条件:
- 死亡率:假设实际死亡率与预期死亡率一致。
- 利率:假设实际投资收益率为 5%。
- 退保率:假设退保率为 5%。
- 费用:初始费用为保费的 20%,年度管理费用为保费的 5%。
-
现金流计算:
- 保费收入:每年收取毛保费 ( P_{\text{gross}} )。
- 保险金支出:根据死亡率计算每年的保险金支出。
- 投资收益:根据准备金余额和投资收益率计算。
- 运营费用:包括初始费用和年度管理费用。
-
利润贡献:
- 每年的利润贡献 Profit Contribution t = P gross + I t − B t − E t \text{Profit Contribution}_t = P_{\text{gross}} + I_t - B_t - E_t Profit Contributiont=Pgross+It−Bt−Et。
-
股东回报率(SRR):
- 假设股东权益为 100 万元。
- 股东回报率 SRR = ∑ t = 1 20 Profit Contribution t 100 \text{SRR} = \frac{\sum_{t=1}^{20} \text{Profit Contribution}_t}{100} SRR=100∑t=120Profit Contributiont。
-
内部收益率(IRR):
- 通过现金流的净现值(NPV)为零时的折现率计算。
11.5 风险评估
-
敏感性分析:
- 假设死亡率增加 10%,重新计算利润贡献和股东回报率。
- 假设利率下降 1%,重新计算利润贡献和股东回报率。
-
蒙特卡洛模拟:
- 通过随机模拟 1000 次,计算利润贡献的分布和风险价值(VaR)。
11.6 结论
通过上述计算和分析,该定期寿险产品在当前假设条件下具有较高的盈利能力,股东回报率和内部收益率均满足公司的预期。然而,该产品对利率风险较为敏感,建议通过资产配置和再保险策略进行风险管理。
以上是寿险精算的完整总结,涵盖了从基础概念到实际应用的各个方面。希望这些内容对你有所帮助!