1572. 矩阵对角线元素的和

1572. 矩阵对角线元素的和

  • 题号:力扣1572
  • 知识点:矩阵
  • 目标完成度:9/150
  • 总结
    题干:
    在这里插入图片描述

思路:

  • 1.主对角线求和比较简单,索引是[0][0], [1][1], ... , [len(mat)-1][len(mat)-1]
  • 2.副对角线求和采用从上到下的顺序累加,由j充当第一维的计数器,从左到右的移动由right控制
  • 3.当n为奇数时,矩阵中间的元素即在主对角线也在副对角线上,因此在1 2 中被重复累加了,再减去一份即可。
class Solution:
    def diagonalSum(self, mat: List[List[int]]) -> int:
        right = len(mat)-1
        ret = 0
        # 主对角线求和
        for i in range(len(mat)):
            ret += mat[i][i]
        # 副对角线求和
        for j in range(len(mat)):
            ret += mat[j][right]
            right -= 1
         # n为奇数时,减去多加了一次的中心元素
        if len(mat) % 2:
            mid = len(mat) // 2
            ret -= mat[mid][mid]
        return ret
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值