题目
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
思路
直觉,看到就觉得得用动态规划来做。首先要确定他的转移方程。因为它只能往右走和往下走,第一行只能往右走了,所以第一行的转移方程是dp[0][j]=dp[0][j-1]+grid[0][j];
第一列也是类似的道理,只能从上往下走,所以第一列的转移方程是
dp[i][0]=dp[i-1][0]+grid[i][0];
中间的,因为它可以可以从上面走还可以从左边走,我们每次在左边和上边挑选一个最大的并且加上对应位置的值即可。它的转移方程是
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];
最后,只需要返回对应位置的数值就是礼物的最大价值。
代码
//礼物的最大价值
class Solution {
public int maxValue(int[][] grid) {
int row=grid.length;
int colomn=grid[0].length;
int dp[][]=new int[row][colomn];
dp[0][0]=grid[0][0];
for (int j=1;j<colomn;++j)
dp[0][j]=dp[0][j-1]+grid[0][j];
for (int i=1;i<row;++i)
dp[i][0]=dp[i-1][0]+grid[i][0];
for (int i=1;i<row;++i)
for (int j=1;j<colomn;++j)
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];
return dp[row-1][colomn-1];
}
}
结果
简单的动态规划题,只要能找出转移方程就可以解决了。