LeetCode——剑指 Offer 47. 礼物的最大价值

礼物的最大价值

题目

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

思路

直觉,看到就觉得得用动态规划来做。首先要确定他的转移方程。因为它只能往右走和往下走,第一行只能往右走了,所以第一行的转移方程是dp[0][j]=dp[0][j-1]+grid[0][j];

第一列也是类似的道理,只能从上往下走,所以第一列的转移方程是
dp[i][0]=dp[i-1][0]+grid[i][0];

中间的,因为它可以可以从上面走还可以从左边走,我们每次在左边和上边挑选一个最大的并且加上对应位置的值即可。它的转移方程是
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];

最后,只需要返回对应位置的数值就是礼物的最大价值。

代码

//礼物的最大价值
class Solution {
    public int maxValue(int[][] grid) {
        int row=grid.length;
        int colomn=grid[0].length;
        int dp[][]=new int[row][colomn];

        dp[0][0]=grid[0][0];
        for (int j=1;j<colomn;++j)
            dp[0][j]=dp[0][j-1]+grid[0][j];

        for (int i=1;i<row;++i)
            dp[i][0]=dp[i-1][0]+grid[i][0];

        for (int i=1;i<row;++i)
            for (int j=1;j<colomn;++j)
                dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];

        return dp[row-1][colomn-1];
    }
}

结果

在这里插入图片描述
简单的动态规划题,只要能找出转移方程就可以解决了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值