一、题目
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
- 0 < grid.length <= 200
- 0 < grid[0].length <= 200
二、解决
1、动态规划–版本1
思路:
1、状态定义
dp(i, j):从左上角开始,到达单元格(i, j)时能拿到礼物的最大累计价值。
2、转移方程
dp(i, j) = {dp(i, j-1), dp(i-1, j)} + grid(i, j)
3、初始化
if i =0, j =0, then dp(i, j) = grid(i, j)
if i =0, j!=0, then dp(i, j) = grid(i, j) + dp(i, j-1)
if i!=0, j =0, then dp(i, j) = grid(i, j) + dp(i-1, j)
if i!=0, j!=0, then dp(i, j) = grid(i, j) + max(dp(i-1, j), dp(i, j-1))
4、返回值:dp[m-1, n-1]
代码:
class Solution {
public int maxValue(int[][] grid) {
int m = grid.length, n = grid[0].length;
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(i == 0 && j == 0) continue;
if(i == 0) grid[i][j] += grid[i][j - 1] ;
else if(j == 0) grid[i][j] += grid[i - 1][j];
else grid[i][j] += Math.max(grid[i][j - 1], grid[i - 1][j]);
}
}
return grid[m - 1][n - 1];
}
}
时间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
空间复杂度:
O
(
1
)
O(1)
O(1)
2、动态规划–版本2
思路:
多扩充一层空间,解决边界值问题,使得代码更加简洁。
注意:这里的动态转移方程 f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i,j)
变成了 f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i-1,j-1)
。
代码:
class Solution {
public int maxValue(int[][] grid) {
int row = grid.length;
int column = grid[0].length;
//dp[i][j]表示从grid[0][0]到grid[i - 1][j - 1]时的最大价值
int[][] dp = new int[row + 1][column + 1];
for (int i = 1; i <= row; i++) {
for (int j = 1; j <= column; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
}
}
return dp[row][column];
}
}
时间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
空间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)