【LeetCode-剑指Offer】47. 礼物的最大价值

一、题目

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 13521 可以拿到最多价值的礼物

提示:

  • 0 < grid.length <= 200
  • 0 < grid[0].length <= 200

二、解决

1、动态规划–版本1

思路:

1、状态定义
dp(i, j):从左上角开始,到达单元格(i, j)时能拿到礼物的最大累计价值。

2、转移方程
dp(i, j) = {dp(i, j-1), dp(i-1, j)} + grid(i, j)

3、初始化
if i =0, j =0, then dp(i, j) = grid(i, j)
if i =0, j!=0, then dp(i, j) = grid(i, j) + dp(i, j-1)
if i!=0, j =0, then dp(i, j) = grid(i, j) + dp(i-1, j)
if i!=0, j!=0, then dp(i, j) = grid(i, j) + max(dp(i-1, j), dp(i, j-1))

4、返回值:dp[m-1, n-1]

代码:

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < n; j++) {
                if(i == 0 && j == 0) continue;
                if(i == 0) grid[i][j] += grid[i][j - 1] ;
                else if(j == 0) grid[i][j] += grid[i - 1][j];
                else grid[i][j] += Math.max(grid[i][j - 1], grid[i - 1][j]);
            }
        }
        return grid[m - 1][n - 1];
    }
}

时间复杂度: O ( m ∗ n ) O(m*n) O(mn)
空间复杂度: O ( 1 ) O(1) O(1)

2、动态规划–版本2

思路:

多扩充一层空间,解决边界值问题,使得代码更加简洁。

注意:这里的动态转移方程 f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i,j) 变成了 f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i-1,j-1)

代码:

class Solution {
    public int maxValue(int[][] grid) {
        int row = grid.length;
        int column = grid[0].length;
        //dp[i][j]表示从grid[0][0]到grid[i - 1][j - 1]时的最大价值
        int[][] dp = new int[row + 1][column + 1];
        for (int i = 1; i <= row; i++) {
            for (int j = 1; j <= column; j++) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return dp[row][column];
    }
}

时间复杂度: O ( m ∗ n ) O(m*n) O(mn)
空间复杂度: O ( m ∗ n ) O(m*n) O(mn)

三、参考

1、面试题47. 礼物的最大价值(动态规划,清晰图解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值