论文阅读笔记 | 三维目标检测——MV3D算法

MV3D算法结合激光雷达和图像信息,通过提案投影网络生成3D候选框,再利用区域融合网络进行多模态特征融合,实现3D目标检测。该算法在自动驾驶领域的3D定位和2D检测中表现出高准确性,通过鸟瞰图生成候选框以避免遮挡问题,并采用阶段式融合和辅助损失等技术提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如有错误,恳请指出。


paper:《Multi-View 3D Object Detection Network for Autonomous Driving》

1. 背景

激光雷达可以提供物体的深度信息,而摄像头可以提供物体的细节语义信息,利用Lidar+Image两种模态理应可以获得更好的检测效果。一般来说,基于LIDAR点云的方法通常可以获得更准确的3D位置,而基于图像的方法在2D框评估方面具有更高的准确性,如何有效的利用来自与Lidar和Imgae两种模态获得更好的3d检测效果设计模型结构是MV3D的出发点,并启发于FractalNet和Deeply-Fused Net两个工作进行网络设计。

此外,在Related Work中有些比较有趣的工作,比如利用体素和点云的多视图表示来进行3d物体分类任务,利用图像和深度信息以及光流的组合进行2d行人检测,不过这种利用多模态进行自动驾驶的研究还比较少。


2. 网络结构

网络的大体思路是利用点云的鸟瞰图生成3d候选框,再投影回去图像、点云、鸟瞰图模态上获取区域特征(region feature map),再将这些来自不同模态的区域特征进行深度融合用于后续的分类和边界框回归。结构图如下,下面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值