论文阅读笔记 | 三维目标检测——AVOD算法

AVOD是一种两阶段3D目标检测网络,通过在高分辨率特征图上融合RGB和BEV信息,提高小目标定位。与MV3D不同,AVOD在全尺寸特征图上进行特征融合,生成更精确的3D提案。网络结构包括Encoder-Decoder,用于反卷积到原始尺寸,减少小目标检测的损失。通过4 Corners+Height的回归损失,优化边界框预测,尤其对行人检测有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如有错误,恳请指出。


paper:《Joint 3D Proposal Generation and Object Detection from View Aggregation》

1. 背景

AVOD同样是一个two-stage(使用了RPN提取候选框)、anchor-based网络结构。获得较高的召回率对RPN网络来说是比较重要的,但对于稀疏的较低分辨率的输入来说(比如前视图和鸟瞰图)不足以让RPN输出高质量的候选框,且导致低召回率,这会在第二个阶段带来无法逆转的结构。基于这个考虑,AVOD设计了一个新颖的RPN结构可以通过在高分辨率特征图上进行多模态特征融合(将来自RGB图像和BEV的全分辨率特征图为输入),来提高小目标的定位精度。

补充一点,这里与MV3D的处理方法是不一样的。对于MV3D中的是对鸟瞰图的特征进行3d候选框的生成再投影回去每个模态的特征图中获得统一尺寸的roi特征图,所以本质上MV3D融合的信息较小,对于小目标来说检测精度较低。而AVOD采取的方案是利用投影在RGB图与BEV全尺寸的特征图上获取feature crop融合来进行最后边界框的预测,在下面网络结构中会详细介绍。


2. 网络结构

AVOD的网络结构图如下所示。对于BEV输入表示采用与MV

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值