一、大概意思
loss越小越好
科普:反向传播意思就是,尝试如何调整网络过程中的参数才会导致最终的loss变小(因为是从loss开始推导参数,和网络的顺序相反,所以叫反向传播),以及梯度的理解可以直接当成“斜率”
损失函数的意义:
二、看文档
1、L1——loss
torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')
--------------------------------------------------------------
看下输入和输出
输入:
1、N:batchsize
2、 , 可以是任意维度的 数据
模板target:
与输入同形式
输出,如果不指定reduction,那么和输入同形式
代码看下
(1)新建数据
(2)使用reshape扩展维数至四维
import torch.nn
import torch
from torch.nn import L1Loss
inputs=torch.tensor([1,2,3])
targets=torch.tensor([1,2,5])
print(inputs.shape)
inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])
print(inputs.shape)
loss=L1Loss()
result=loss(inputs,targets)
print(result)
报错,说我们数字类型不符合要求,
要浮点型,那么我们修改类型,用dtype
inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)
这样完整代码:
import torch.nn
import torch
from torch.nn import L1Loss
inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)
print(inputs.shape)
inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])
print(inputs.shape)
loss=L1Loss()
result=loss(inputs,targets)
print(result)
可以看到通过loss函数计算结果恰好是2/3=0.6667
现在我们指定一下reduction为求和
loss=L1Loss(reduction="sum")
result=loss(inputs,targets)
print(result)
结果显然为2
2、MSEloss
torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)
看下代码
import torch
import torch.nn
from torch.nn import MSELoss
inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)
print(inputs.shape)
inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])
print(inputs.shape)
loss=MSELoss()
result=loss(inputs,targets)
print(result)
输出结果为1.333与我们计算一致
3、CrossEntropyLoss
交叉熵:常用于分类的损失函数
t is useful when training a classification problem with C classes.
常用于训练分类问题(类别数量为C)
计算公式如下;
举例子
代码来看下
先看下文档中需要的shape
import torch
from torch.nn import CrossEntropyLoss
x=torch.tensor([0.1,0.2,0.3]) 这里x是一维的
y=torch.tensor([1])
print(x.shape)
x=torch.reshape(x,(1,3))
print(x.shape)
//因为CrossEntropyLoss中x为输入,形式为二维(batchisize,类别数量)
y为target,所以要把x变成二维//
loss_cross=CrossEntropyLoss()
result_loss=loss_cross(x,y)
print(result_loss)
输出:
torch.Size([3])
torch.Size([1, 3])
tensor(1.1019)
**对于狗计算公式:
这里需要注意一下,文档中的log实际上是ln自然对数**
=-0.2+ln(exp(0.1)+exp(0.2)+exp(0.3))
计算正确
三、1 损失函数实战
1、先从上次学习中搭建的神经网络(sequential)复制进来
from torch.nn import Sequential
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1=Sequential(
Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, 2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, 2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
2、导入cifar数据集
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
dataloader=DataLoader(dataset,batch_size=64)
3、for循环取出imgs,targets。然后通过神经网络操作
tudui=Tudui()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
print(output)
print(targets)
4、最终:
from torch.nn import Sequential
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1=Sequential(
Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, 2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, 2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
tudui=Tudui()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
print(output)
print(targets)
因为设置了batchsize数据比较多,我们改为1
再看输出结果
tensor([[ 0.0835, -0.0427, -0.1136, 0.0751, -0.1241, 0.0557, 0.0384, 0.1432,
-0.0817, 0.0711]], grad_fn=<AddmmBackward0>)
tensor([1])
tensor([[ 0.0749, -0.0500, -0.1154, 0.0736, -0.1187, 0.0532, 0.0397, 0.1437,
-0.1071, 0.0638]], grad_fn=<AddmmBackward0>)
tensor([7])
//可以看到一张图片经过神经网络会有10个输出,输出的值代表10类不同东西的神经网络线性值
!!经弹幕大神了解到,因为没有softmax层,没归一化,没有过激活函数,所以输出的不是概率!~!!
//tensor【1】和tensor【7】则是类列表中的序号了
5、用上我们今天学的loss函数中的交叉熵
loss=nn.CrossEntropyLoss()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
result_loss=loss(output,targets)
print(output)
print(targets)
print(result_loss)
这样就计算出了实际输出与目标之间的误差
最终:
from torch.nn import Sequential
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
dataloader=DataLoader(dataset,batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1=Sequential(
Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, 2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, 2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
tudui=Tudui()
loss=nn.CrossEntropyLoss()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
result_loss=loss(output,targets)
print(output)
print(targets)
print(result_loss)
三、2 反向传播实战
科普:反向传播意思就是,尝试如何调整网络过程中的参数才会导致最终的loss变小(因为是从loss开始推导参数,和网络的顺序相反,所以叫反向传播),以及梯度的理解可以直接当成“斜率”
1、添加反向传播
注意是在自己的loss上添加: result_loss.backward()
而非继承的loss函数上
loss=nn.CrossEntropyLoss()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
result_loss=loss(output,targets)
result_loss.backward()
print("ok")
2、加入断点 debug一下
下面变量中:
tudui——model1——protected attributes——moudules下可以发现我们的神经网络
其中0是第一层卷积层:
在其下的weight权重下面,发现有grad梯度,现在还没有值
然后我们按下继续运行;
执行的代码是:
result_loss.backward()
我们发现梯度这里有了数据
这样就能计算出梯度
以便对loss进行优化
最终代码:
from torch.nn import Sequential
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
dataloader=DataLoader(dataset,batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1=Sequential(
Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, 2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, 2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
tudui=Tudui()
loss=nn.CrossEntropyLoss()
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
result_loss=loss(output,targets)
result_loss.backward()
print("ok")