P23 损失函数与反向传播 来自torch.nn

一、大概意思

loss越小越好
在这里插入图片描述
科普:反向传播意思就是,尝试如何调整网络过程中的参数才会导致最终的loss变小(因为是从loss开始推导参数,和网络的顺序相反,所以叫反向传播),以及梯度的理解可以直接当成“斜率”

损失函数的意义:
在这里插入图片描述

二、看文档

在这里插入图片描述
1、L1——loss

torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')

在这里插入图片描述--------------------------------------------------------------
看下输入和输出
输入:
1、N:batchsize
2、
可以是任意维度的 数据
模板target:
与输入同形式
输出,如果不指定reduction,那么和输入同形式

在这里插入图片描述
代码看下
(1)新建数据
(2)使用reshape扩展维数至四维

import torch.nn
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3])
targets=torch.tensor([1,2,5])
print(inputs.shape)

inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])

print(inputs.shape)

loss=L1Loss()
result=loss(inputs,targets)

print(result)

报错,说我们数字类型不符合要求,
要浮点型,那么我们修改类型,用dtype
在这里插入图片描述


inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

这样完整代码:

import torch.nn
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)
print(inputs.shape)

inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])

print(inputs.shape)

loss=L1Loss()
result=loss(inputs,targets)

print(result)

可以看到通过loss函数计算结果恰好是2/3=0.6667
在这里插入图片描述

现在我们指定一下reduction为求和

loss=L1Loss(reduction="sum")
result=loss(inputs,targets)
print(result)

结果显然为2
在这里插入图片描述

2、MSEloss
torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)
在这里插入图片描述
在这里插入图片描述
看下代码

import torch
import torch.nn
from torch.nn import MSELoss


inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)
print(inputs.shape)

inputs=torch.reshape(inputs,[1,1,1,3])
targets=torch.reshape(targets,[1,1,1,3])

print(inputs.shape)

loss=MSELoss()
result=loss(inputs,targets)
print(result)

输出结果为1.333与我们计算一致
在这里插入图片描述

在这里插入图片描述

3、CrossEntropyLoss
交叉熵:常用于分类的损失函数

t is useful when training a classification problem with C classes.
常用于训练分类问题(类别数量为C)

计算公式如下;
举例子
在这里插入图片描述

代码来看下
先看下文档中需要的shape
在这里插入图片描述

import torch
from torch.nn import CrossEntropyLoss

x=torch.tensor([0.1,0.2,0.3]) 这里x是一维的
y=torch.tensor([1])
print(x.shape)
x=torch.reshape(x,(1,3))
print(x.shape)
//因为CrossEntropyLoss中x为输入,形式为二维(batchisize,类别数量)
					y为target,所以要把x变成二维//
loss_cross=CrossEntropyLoss()
result_loss=loss_cross(x,y)
print(result_loss)

输出:
torch.Size([3])
torch.Size([1, 3])
tensor(1.1019)

**对于狗计算公式:
在这里插入图片描述

这里需要注意一下,文档中的log实际上是ln自然对数**

=-0.2+ln(exp(0.1)+exp(0.2)+exp(0.3))
在这里插入图片描述
计算正确

三、1 损失函数实战

1、先从上次学习中搭建的神经网络(sequential)复制进来

from torch.nn import Sequential
from  torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1=Sequential(
            Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, 1, 2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, 1, 2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

2、导入cifar数据集

from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)


3、for循环取出imgs,targets。然后通过神经网络操作

tudui=Tudui()

for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(output)
    print(targets)

4、最终:

from torch.nn import Sequential
from  torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1=Sequential(
            Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, 1, 2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, 1, 2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

tudui=Tudui()

for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(output)
    print(targets)

因为设置了batchsize数据比较多,我们改为1
再看输出结果

tensor([[ 0.0835, -0.0427, -0.1136,  0.0751, -0.1241,  0.0557,  0.0384,  0.1432,
         -0.0817,  0.0711]], grad_fn=<AddmmBackward0>)
tensor([1])
tensor([[ 0.0749, -0.0500, -0.1154,  0.0736, -0.1187,  0.0532,  0.0397,  0.1437,
         -0.1071,  0.0638]], grad_fn=<AddmmBackward0>)
tensor([7])


//可以看到一张图片经过神经网络会有10个输出,输出的值代表10类不同东西的神经网络线性值
!!经弹幕大神了解到,因为没有softmax层,没归一化,没有过激活函数,所以输出的不是概率!~!!
//tensor【1】和tensor【7】则是类列表中的序号了

5、用上我们今天学的loss函数中的交叉熵


loss=nn.CrossEntropyLoss()
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    result_loss=loss(output,targets)
    print(output)
    print(targets)
    print(result_loss)

这样就计算出了实际输出与目标之间的误差
在这里插入图片描述
最终:

from torch.nn import Sequential
from  torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1=Sequential(
            Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, 1, 2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, 1, 2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

tudui=Tudui()


loss=nn.CrossEntropyLoss()
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    result_loss=loss(output,targets)
    print(output)
    print(targets)
    print(result_loss)

三、2 反向传播实战

科普:反向传播意思就是,尝试如何调整网络过程中的参数才会导致最终的loss变小(因为是从loss开始推导参数,和网络的顺序相反,所以叫反向传播),以及梯度的理解可以直接当成“斜率”
1、添加反向传播
注意是在自己的loss上添加: result_loss.backward()
而非继承的loss函数上

loss=nn.CrossEntropyLoss()
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    result_loss=loss(output,targets)
    result_loss.backward()
    print("ok")

2、加入断点 debug一下
在这里插入图片描述
下面变量中:
tudui——model1——protected attributes——moudules下可以发现我们的神经网络
其中0是第一层卷积层:

在这里插入图片描述
在其下的weight权重下面,发现有grad梯度,现在还没有值
在这里插入图片描述
然后我们按下继续运行;
执行的代码是:

result_loss.backward()

在这里插入图片描述
我们发现梯度这里有了数据
在这里插入图片描述
这样就能计算出梯度
以便对loss进行优化

最终代码:

from torch.nn import Sequential
from  torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
import torchvision
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./P23_dataset",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=1)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1=Sequential(
            Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, 1, 2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, 1, 2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

tudui=Tudui()


loss=nn.CrossEntropyLoss()
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    result_loss=loss(output,targets)
    result_loss.backward()
    print("ok")

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值