树链剖分

题目描述

一棵树上有 nnn 个节点,编号分别为 111 到 nnn,每个节点都有一个权值 www。

我们将以下面的形式来要求你对这棵树完成一些操作:

I. CHANGE u t : 把结点 uuu 的权值改为 ttt。

II. QMAX u v: 询问从点 uuu 到点 vvv 的路径上的节点的最大权值。

III. QSUM u v: 询问从点 uuu 到点 vvv 的路径上的节点的权值和。

注意:从点 uuu 到点 vvv 的路径上的节点包括 uuu 和 vvv 本身。
输入格式

输入文件的第一行为一个整数 nnn,表示节点的个数。

接下来 n−1n-1n−1 行,每行 222 个整数 aaa 和 bbb,表示节点 aaa 和节点 bbb 之间有一条边相连。

接下来一行 nnn 个整数,第 iii 个整数 wiw_iwi​ 表示节点 iii 的权值。

接下来 111 行,为一个整数 qqq,表示操作的总数。

接下来 qqq 行,每行一个操作,以 CHANGE u t 或者 QMAX u v 或者 QSUM u v 的形式给出。
输出格式

对于每个 QMAX 或者 QSUM 的操作,每行输出一个整数表示要求输出的结果。

思路:熟练剖分模板题。
直接转化为对线段树的操作就好了。
坑点:输入的权值是树上的权值,在线段树上映射需要转化一下。

#include<bits/stdc++.h>
#include<queue>
#include<map>
#include<vector>
#include<string>
#include<string.h>
#include<iostream>
#include<stdio.h>
#include<algorithm>
#define MAXN 30010
#define SIGMA_SIZE 26
#define mod 10007
#define INF 0x3f3f3f3f
#define inf 0x8f
#define SIGMA_SIZE 26
#define lowbit(x) (x&(-x))
using namespace std;
typedef long long LL;

struct node
{
    int l,r,maxn,sum;
}tree[MAXN<<2];

int deep[MAXN],top[MAXN],fa[MAXN],son[MAXN],ssize[MAXN],a[MAXN];
vector<int> G[MAXN];int ind[MAXN],val[MAXN];
int n,m,t,u,v,tot,maxn,sum,ans;
char str[100];

void pushup(int id)
{
    tree[id].maxn=max(tree[id<<1].maxn,tree[id<<1|1].maxn);
    tree[id].sum=tree[id<<1].sum+tree[id<<1|1].sum;
}

void build(int id,int l,int r)
{
    tree[id].l=l;tree[id].r=r;
    if(l==r)
    {
        tree[id].maxn=tree[id].sum=val[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(id<<1,l,mid);
    build(id<<1|1,mid+1,r);
    pushup(id);
}

void update(int id,int x,int val)
{
    if(tree[id].l==tree[id].r)
    {
        tree[id].maxn=tree[id].sum=val;
        return ;
    }
    int mid=(tree[id].l+tree[id].r)>>1;
    if(x<=mid)
        update(id<<1,x,val);
    else
        update(id<<1|1,x,val);
    pushup(id);
}

int query_sum(int id,int l,int r)
{
    if(tree[id].l>=l&&tree[id].r<=r)
        return tree[id].sum;
    int mid=(tree[id].l+tree[id].r)>>1;
    int ans=0;
    if(l<=mid)
        ans+=query_sum(id<<1,l,r);
    if(r>mid)
        ans+=query_sum(id<<1|1,l,r);
    return ans;
}

int query_maxn(int id,int l,int r)
{
    if(tree[id].l>=l&&tree[id].r<=r)
        return tree[id].maxn;
    int mid=(tree[id].l+tree[id].r)>>1;
    int ans=-INF;
    if(l<=mid)
        ans=max(ans,query_maxn(id<<1,l,r));
    if(r>mid)
        ans=max(ans,query_maxn(id<<1|1,l,r));
    return ans;
}

void dfs1(int u,int dep,int f)
{
    fa[u]=f;deep[u]=dep;ssize[u]=1;
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(v==f)
            continue;
        dfs1(v,dep+1,u);
        ssize[u]+=ssize[v];
        if(ssize[son[u]]<ssize[v])
            son[u]=v;
    }
}

void dfs2(int u,int t)
{
    top[u]=t;ind[u]=++tot;
    if(!son[u])
        return ;
    dfs2(son[u],t);
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(v==fa[u]||v==son[u])
            continue;
        dfs2(v,v);
    }
}

void  Query(int x,int y)
{
    int fx=top[x];int fy=top[y];
    ans=0;maxn=-INF;
    while(fx!=fy)
    {
        if(deep[fx]>deep[fy])
        {
            ans+=query_sum(1,ind[fx],ind[x]);
            maxn=max(maxn,query_maxn(1,ind[fx],ind[x]));
            x=fa[fx];fx=top[x];
        }
        else
        {
            ans+=query_sum(1,ind[fy],ind[y]);
            maxn=max(maxn,query_maxn(1,ind[fy],ind[y]));
            y=fa[fy];fy=top[y];
        }
    }
    if(ind[x]<=ind[y])
    {
        ans+=query_sum(1,ind[x],ind[y]);
        maxn=max(maxn,query_maxn(1,ind[x],ind[y]));
    }
    else
    {
        ans+=query_sum(1,ind[y],ind[x]);
        maxn=max(maxn,query_maxn(1,ind[y],ind[x]));
    }
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        scanf("%d %d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    dfs1(1,1,-1);
    dfs2(1,1);
    for(int i=1;i<=n;i++)
        val[ind[i]]=a[i];
    build(1,1,n);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%s",str);scanf("%d %d",&u,&v);
        if(str[0]=='Q')
        {
            maxn=-INF;ans=0;
            Query(u,v);
            if(str[1]=='M')
                printf("%d\n",maxn);
            else
                printf("%d\n",ans);
        }
        else
        {
            update(1,ind[u],v);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值