题目描述
一棵树上有 nnn 个节点,编号分别为 111 到 nnn,每个节点都有一个权值 www。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点 uuu 的权值改为 ttt。
II. QMAX u v: 询问从点 uuu 到点 vvv 的路径上的节点的最大权值。
III. QSUM u v: 询问从点 uuu 到点 vvv 的路径上的节点的权值和。
注意:从点 uuu 到点 vvv 的路径上的节点包括 uuu 和 vvv 本身。
输入格式
输入文件的第一行为一个整数 nnn,表示节点的个数。
接下来 n−1n-1n−1 行,每行 222 个整数 aaa 和 bbb,表示节点 aaa 和节点 bbb 之间有一条边相连。
接下来一行 nnn 个整数,第 iii 个整数 wiw_iwi 表示节点 iii 的权值。
接下来 111 行,为一个整数 qqq,表示操作的总数。
接下来 qqq 行,每行一个操作,以 CHANGE u t 或者 QMAX u v 或者 QSUM u v 的形式给出。
输出格式
对于每个 QMAX 或者 QSUM 的操作,每行输出一个整数表示要求输出的结果。
思路:熟练剖分模板题。
直接转化为对线段树的操作就好了。
坑点:输入的权值是树上的权值,在线段树上映射需要转化一下。
#include<bits/stdc++.h>
#include<queue>
#include<map>
#include<vector>
#include<string>
#include<string.h>
#include<iostream>
#include<stdio.h>
#include<algorithm>
#define MAXN 30010
#define SIGMA_SIZE 26
#define mod 10007
#define INF 0x3f3f3f3f
#define inf 0x8f
#define SIGMA_SIZE 26
#define lowbit(x) (x&(-x))
using namespace std;
typedef long long LL;
struct node
{
int l,r,maxn,sum;
}tree[MAXN<<2];
int deep[MAXN],top[MAXN],fa[MAXN],son[MAXN],ssize[MAXN],a[MAXN];
vector<int> G[MAXN];int ind[MAXN],val[MAXN];
int n,m,t,u,v,tot,maxn,sum,ans;
char str[100];
void pushup(int id)
{
tree[id].maxn=max(tree[id<<1].maxn,tree[id<<1|1].maxn);
tree[id].sum=tree[id<<1].sum+tree[id<<1|1].sum;
}
void build(int id,int l,int r)
{
tree[id].l=l;tree[id].r=r;
if(l==r)
{
tree[id].maxn=tree[id].sum=val[l];
return ;
}
int mid=(l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
pushup(id);
}
void update(int id,int x,int val)
{
if(tree[id].l==tree[id].r)
{
tree[id].maxn=tree[id].sum=val;
return ;
}
int mid=(tree[id].l+tree[id].r)>>1;
if(x<=mid)
update(id<<1,x,val);
else
update(id<<1|1,x,val);
pushup(id);
}
int query_sum(int id,int l,int r)
{
if(tree[id].l>=l&&tree[id].r<=r)
return tree[id].sum;
int mid=(tree[id].l+tree[id].r)>>1;
int ans=0;
if(l<=mid)
ans+=query_sum(id<<1,l,r);
if(r>mid)
ans+=query_sum(id<<1|1,l,r);
return ans;
}
int query_maxn(int id,int l,int r)
{
if(tree[id].l>=l&&tree[id].r<=r)
return tree[id].maxn;
int mid=(tree[id].l+tree[id].r)>>1;
int ans=-INF;
if(l<=mid)
ans=max(ans,query_maxn(id<<1,l,r));
if(r>mid)
ans=max(ans,query_maxn(id<<1|1,l,r));
return ans;
}
void dfs1(int u,int dep,int f)
{
fa[u]=f;deep[u]=dep;ssize[u]=1;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==f)
continue;
dfs1(v,dep+1,u);
ssize[u]+=ssize[v];
if(ssize[son[u]]<ssize[v])
son[u]=v;
}
}
void dfs2(int u,int t)
{
top[u]=t;ind[u]=++tot;
if(!son[u])
return ;
dfs2(son[u],t);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==fa[u]||v==son[u])
continue;
dfs2(v,v);
}
}
void Query(int x,int y)
{
int fx=top[x];int fy=top[y];
ans=0;maxn=-INF;
while(fx!=fy)
{
if(deep[fx]>deep[fy])
{
ans+=query_sum(1,ind[fx],ind[x]);
maxn=max(maxn,query_maxn(1,ind[fx],ind[x]));
x=fa[fx];fx=top[x];
}
else
{
ans+=query_sum(1,ind[fy],ind[y]);
maxn=max(maxn,query_maxn(1,ind[fy],ind[y]));
y=fa[fy];fy=top[y];
}
}
if(ind[x]<=ind[y])
{
ans+=query_sum(1,ind[x],ind[y]);
maxn=max(maxn,query_maxn(1,ind[x],ind[y]));
}
else
{
ans+=query_sum(1,ind[y],ind[x]);
maxn=max(maxn,query_maxn(1,ind[y],ind[x]));
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d %d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
dfs1(1,1,-1);
dfs2(1,1);
for(int i=1;i<=n;i++)
val[ind[i]]=a[i];
build(1,1,n);
scanf("%d",&t);
while(t--)
{
scanf("%s",str);scanf("%d %d",&u,&v);
if(str[0]=='Q')
{
maxn=-INF;ans=0;
Query(u,v);
if(str[1]=='M')
printf("%d\n",maxn);
else
printf("%d\n",ans);
}
else
{
update(1,ind[u],v);
}
}
return 0;
}