均值模糊与高斯模糊

C++均值模糊与高斯模糊
1、均值模糊
1.1、 模糊

原理:
平滑、模糊是图像常见的简单处理之一,主要目的是为了降低图像中的噪声。
模糊操作的原理是数学中的卷积运算。
在这里插入图片描述
f ( i , j ) f(i,j) f(i,j) 表示图像中处理的像素, ( k , l ) (k,l) (k,l)表示滤波器的大小,一般情况下, k = l k=l k=l
运算过程就是将卷积核中的值对应图像中的值相乘后相加。将所得值就是像素 g ( i , j ) g(i,j) g(i,j)

1.2、均值模糊

卷积运算1
卷积运算2

在这里插入图片描述
均值滤波
在这里插入图片描述
在这里插入图片描述

2、高斯滤波

高斯滤波原理
σ x \sigma_x σx σ y \sigma_y σy用来调节大小,A表示权值参数, ( x , y ) (x,y) (xy)为像素值。
在这里插入图片描述

3、代码实现
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;

int main(int argc, char** args)
{
	Mat img = imread("G:/testpic/label.png");
	if (!img.data)
	{
		printf("cannot load the image");
		return -1;
	}
	char input_img[] = "img";
	char output_blur[] = "blur";
	char output_gaussian_blur[] = "gaussian_blur";
		
	namedWindow(input_img, WINDOW_AUTOSIZE);
	imshow(input_img, img);

	Mat dst1, dst2;

	//均值模糊
	blur(img, dst1, Size(3,3), Point(-1,-1)); //Point(-1,-1)为卷积核中心的位置
	namedWindow(output_blur, WINDOW_AUTOSIZE);
	imshow(output_blur, dst1);

	//高斯模糊
	//
	GaussianBLur(img, dst2, Size(3,3), 10, 10); //10为 $\sigma$的大小
	namedWindow(output_gaussian_blur, WINDOW_AUTOSIZE);
	imshow(output_gaussian_blur, dst2);

	waitKey(0);
	return 0;
}

示例图
均值模糊:
在这里插入图片描述
高斯模糊:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>