信号与系统 chapter2 冲激偶函数与阶跃函数

冲激偶函数是一种特殊的数学函数,其在负方向趋近于0时表现为无穷大,正方向则趋近无穷小。它是阶跃函数的导数,常用于信号处理和控制系统分析。在t=1时刻,该函数表现为2倍的ξ(t)减去3倍右移的ξ(t),导致t=1处的值为-1,再叠加一个右移2个单位的阶跃函数,使得值回归到0。冲激偶函数在数学和工程领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是冲激偶函数

简单来说,从负方向向0趋近,结果为无穷大,从正方向趋近于0,结果为无穷小
在这里插入图片描述
它的性质:
在这里插入图片描述
冲激函数求导得来,推广:
在这里插入图片描述
阶跃函数

在这里插入图片描述
会考察你让你写出函数表达式
看上面那个式子,它所表达的可以看成是几个阶跃信号叠加在一起的效果,比如在 t = 1 t=1 t=1时刻,2倍的 ξ ( t ) \xi(t) ξ(t)减去一个扩大了三倍且向右移动了1个单位的 ξ ( t ) \xi(t) ξ(t)函数,所以它在 t = 1 t=1 t=1处的值为-1,在加上一个向右移动两个单位的阶跃函数,值又回归到0.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值