脉冲函数(也称冲激函数)

用矩形脉冲的极限来定义冲激函数

下图所示为宽为\tau,高为\frac{1}{\tau }的矩形脉冲,当保持矩形面积\tau \cdot \frac{1}{\tau }=1不变,而使脉冲宽度\tau趋向于零时,脉冲幅度\frac{1}{\tau }趋向于无穷大,这种极限情况就是单位冲激函数,一般用用符号\delta (t)表示,又称做\delta函数。

\delta (t)=\lim_{\tau \to 0}\frac{1}{\tau }\left [ u(t+\frac{\tau }{2})-u(t-\frac{\tau }{2}) \right ]\; \; \; \; (1-1)

上面公式中,u(t)表示单位阶跃函数,\frac{1}{\tau }\left [ u(t+\frac{\tau }{2})-u(t-\frac{\tau }{2}) \right ]是由两个阶跃函数合成的脉动函数。也就是说,脉动函数的极限就是脉冲函数。它的宽度趋向于0,高度趋向于无穷大,面积等于1。

单位冲激函数示意图用箭头表示,如下图所示

它示意表明,\delta (t)只在t=0点有一“冲激”,在t=0以外各处,函数值都是零。

t_{0}时刻出现的单位脉冲函数表示为\delta (t-t_{0})

脉冲函数的强度一般用面积来表示。强度为E的脉冲函数f(t)可以表示为f(t)=E\delta (t)。在t_{0}时刻出现的脉冲函数表示为f(t-t_{0})=E\delta (t-t_{0})

狄拉克(Dirac)给出\delta函数另外一种定义方式

\left\{\begin{matrix} \int_{-\infty }^{\infty }\delta (t)dt=1\\ \delta (t)=0\; \; \; \; \; \; (t\neq 0) \end{matrix}\right.\; \; \; \; (2-1)

此定义与(1-1)式的定义相符合。有时,也称\delta函数为狄拉克函数。

为了描述在任何一点t=t_{0}处出现的冲激,用如下的\delta (t-t_{0})的定义

\left\{\begin{matrix} \int_{-\infty }^{\infty }\delta (t-t_{0})dt=1\\ \delta (t-t_{0})=0\; \; \; \; \; \; (t\neq t_{0}) \end{matrix}\right.\; \; \; \; (2-1)

示意图

冲激函数的性质

抽样特性(或称筛选特性)

如果单位冲激信号\delta (t)与一个在t=0处连续、且处处有界的信号f(t)相乘,则其乘积仅在t=0处得到f(0)\delta (t),其余各点之乘积均为零,因此得到冲激函数的如下性质

\int_{-\infty }^{\infty }\delta (t)f(t)dt=\int_{-\infty }^{\infty }\delta (t)f(0)dt

=f(0)\int_{-\infty }^{\infty }\delta (t)dt=f(0)\; \; \; \; \; (3-1)

同理,对于延迟t_{0}的单位冲激信号,有

\int_{-\infty }^{\infty }\delta (t-t_{0})f(t)dt=\int_{-\infty }^{\infty }\delta (t-t_{0})f(t_{0})dt=f(t_{0})\; \; \; \; (3-2)

从上面两个公式可以看出冲激信号的抽样特性(或称筛选特性):连续信号f(t)与单位冲激信号\delta (t)相乘,并在-\infty\infty范围内取积分,可以得到f(t)t=0时刻的抽样值f(0);若将单位冲激响应移到t_{0}时刻,则筛选出f(t_{0})

冲激函数是偶函数

冲激函数具有如下性质

\delta (t)=\delta (-t)\; \; \; \; \; (3-3)

即,冲激函数是偶函数。

冲激函数的积分等于阶跃函数

\int_{-\infty }^{t}\delta (\tau )d\tau =u(t)\; \; \; \; (3-4)

反过来,阶跃函数的导数等于冲激函数

\frac{d}{dt}u(t)=\delta (t)\; \; \; \; (3-5)

解释:阶跃函数u(t)在除t=0以外的各点都取固定值,变化率为零。而在t=0处有不连续点,产生突然跳变,这个变化率(导数)就对应在t=0的冲激。

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值