冲激函数的性质

电路对于单位冲激函数的激励的零状态响应称为单位冲激响应。

单位冲激函数也是一种奇异函数,可定义为

\left\{\begin{matrix} \int_{-\infty }^{\infty} \delta (t)dt=1\\ \delta (t)=0 ,t\neq 0 \\ \end{matrix}\right.

单位冲激函数又称为δ函数。它在t≠0处为0,但在t=0处为奇异的。

单位冲激函数δ(t)可以看作是单位脉冲函数的极限情况。图1-a为一个单位矩形脉冲函数p(t)的波形。它的高为\frac{1}{\Delta },宽为\Delta,保持矩形面积\Delta \cdot \frac{1}{\Delta }=1不变的情况下,它的宽度越来越窄时,它的高度越来越大。当脉冲宽度\Delta \rightarrow 0时,脉冲高度\frac{1}{\Delta }\rightarrow \infty,在此情况下,可以得到一个宽度趋于零,幅度区域无穷大的面积仍为1的脉冲,这就是单位冲激函数δ(t),可记为

\lim_{\Delta \rightarrow 0}p(t)=\delta(t)

 单位冲激函数的波形如图1-b所示,有时在箭头旁边注明“1”。强度为k的冲激函数可用图1-c表示,此时箭头旁边应注明“K”。

 图1

         同在时间上延迟出现的单位阶跃函数一样,可以把发生在t=t0时的单位冲激函数写为δ(t-t0),还可以用Kδ(t-t0)表示一个强度为K,发生在t0时刻的冲激函数。

        冲激函数有如下两个主要性质:

        (1)单位冲激函数δ(t)对时间的积分等于单位阶跃函数\varepsilon(t),即

\int_{-\infty }^{t}\delta (\xi )d\xi = \varepsilon (t)

反之,阶跃函数\varepsilon(t)对时间的一阶导数等于冲激函数δ(t),即

\frac{d\varepsilon }{dt}=\delta (t)

        (2)单位冲激函数的“筛分”性质

        由于当t≠0时,δ(t)=0,所以对任意在t=0时连续的函数f(t) ,将有

f(t)\delta (t) = f(0)\delta (t)

因此

\int_{-\infty }^{\infty }f(t) \delta (t)dt = f(0)\int_{-\infty }^{\infty } \delta (t)dt=f(0)

同理,对于任意一个t=t0时连续的函数f(t),有

\int_{-\infty }^{\infty }f(t) \delta (t-t_{0})dt = f(t_{0})

这就是说,冲激函数有把一个函数在某一时刻的值“筛”出来的本领,所以称为“筛分”性质,又称取样性质。

 ——转自电路第5版邱关源p173

  • 15
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值