问题描述
根据问题的分值,正确选项以及选项数目,结合每个同学的答题情况,输出每位同学的得分以及题目出错情况。
题目分析
这道题说来惭愧,我感觉是和58题很类似的,但是改起来就比较费劲了。
正好最近在leetcode上刷位运算的题目,对位运算以及去判断两数是否相等或者字符是否重复很敏感,又结合了网上一些大神的思路,觉得这道题可以掺杂运算的思路解决。我们首先为每个选项分配一个5位的数字,00001-a,00010-b,00100-c,01000-d,10000-e。
我们将其存入一个hash数组中,方便随时取到,对于每个学生做出的答案我们都会与hash中的对应位置进行比较。这里的比较是异或操作,如果异或操作结果为1,说明我们就需要进一步判断了:
1.可能是有一部分选项正确
2.可能都不正确
这两种情况我们都需要进行一些其他操作才能判断出,这里就简单说一下:
1.如果一部分正确的话,可以用学生做出的答案与正确选项做或运算,如果结果等于正确选项,说明学生没有选出其他奇奇怪怪的选项,说明有一部分是正确的‘
2.如果都不正确,我们可以取出二者选项的差异与hash中的a,b,c,d,e编码分别做&运算,搞清楚我们选错的是哪个选项,因为如果差异与a,b,c,d,e其中的一个相等,二者的编码&操作,一定不是0,所以可以判断出我们选错了哪个选项,并将其记录下来。
如果一道题都没有错,输出"Too simple"
其他的就是一些输出的处理细节,这里就不多说了,在代码中大家都可以看到。
这道题真的很有趣,因为它涉及到了位的思想,通过位运算的巧妙,可以很快解决学生做出的选项和正确选项的差异,并快速找出到底是哪里出了问题,算是乙级中很难的一道题目了
代码
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int main() {
//学生人数,题目数,选项数目,正确选项数目
int n, m, optnum, truenum, temp, maxcnt = 0;
//hash用1,2,4,8,16表示是因为要用5位数字表示a,b,c,d,e四个选项
//例如00001表示a,00010表示b,00100表示c,01000表示d,10000表示e
int hash[] = {1, 2, 4, 8, 16}, opt[1010][110] = {0};
char c;
scanf("%d %d", &n, &m);
//满分数组和正确选项数组
vector<int> fullscore(m), trueopt(m);
vector<vector<int>> cnt(m, vector<int>(5));
for (int i = 0; i < m; i++) {
scanf("%d %d %d", &fullscore[i], &optnum, &truenum);
for (int j = 0; j < truenum; j++) {
scanf(" %c", &c);
//把代表a,b,c,d,e的选项编码加在一起,代表一道题的全部选项,后面与学生做出的选项对比计算差异
trueopt[i] += hash[c-'a'];
}
}
for (int i = 0; i < n; i++) {
double grade = 0;
for (int j = 0; j < m; j++) {
getchar();
scanf("(%d", &temp);
for (int k = 0; k < temp; k++) {
scanf(" %c)", &c);
opt[i][j] += hash[c-'a'];
}
int el = opt[i][j] ^ trueopt[j];//判断已选选择与正确选项是否相等,异或的功能
//如果正确选项与我们的选项有差异,有可能是部分正确但是选少了,有可能是选了错误的
if (el) {
//如果选少了,或操作后不会有奇奇怪怪的选项,与正确选项还是相等的
if ((opt[i][j] | trueopt[j]) == trueopt[j]) {
grade += fullscore[j] * 1.0 / 2;
}
//找出选错的那个选项
if (el) {
for (int k = 0; k < 5; k++)
if (el & hash[k]) cnt[j][k]++;
}
} else {
//说明没有选错,加上相应分值即可
grade += fullscore[j];
}
}
printf("%.1f\n", grade);
}
for (int i = 0; i < m; i++)
for (int j = 0; j < 5; j++)
maxcnt = maxcnt > cnt[i][j] ? maxcnt : cnt[i][j];
if (maxcnt == 0) {
printf("Too simple\n");
} else {
for (int i = 0; i < m; i++) {
for (int j = 0; j < cnt[i].size(); j++) {
if (maxcnt == cnt[i][j])
printf("%d %d-%c\n", maxcnt, i+1, 'a'+j);
}
}
}
return 0;
}
答题用时25min
Q73——finish√