【最优化笔记3】线性规划--求解方法(单纯形法及Matlab实现)

单纯形法是求解线性规划问题的一种通用的有效算法(必考点)。
此篇博客以我的好友Cizeron总结为基础完成,特此表示感谢。
在这里插入图片描述

1.前置概念

(1)约束方程的规范形式:
{ m i n   f = c T x s . t .   A x = b , x ≥ 0   (1) \begin{cases}min \,f=c^Tx \\ s.t.\,Ax=b,& \text{$x\geq0 $ } \end{cases} \tag{1} {minf=cTxs.t.Ax=b,x(1)
线性规划(1)的约束条件系数矩阵A通过初等行变换,总可以化为
[ I m , N ] [I_m,N] [Im,N]
则约束条件可以写为
[ I m , N ] [ x B x N ] = b ′ (2) [I_m,N] \begin{bmatrix} x_B\\ x_N\\ \end{bmatrix}=b' \tag{2} [Im,N][xBxN]=b(2)
其中,显然 B = I m B=I_m B=Im即为基, x = ( x B = b ′ , 0 ) T x=(x_B=b',0)^T x=(xB=b,0)T为(1)的关于B基本解。将线性规划问题化为此规范形式是下文编程实现的第一步。
(2)基变换:
若初始基本可行解 x ( 0 ) x^{(0)} x(0)不是最优解,那么就还要找一个新的基本可行解:从原可行基中换出一个列向量(离基变量),再换入一个新的列向量(进基变量)(要保证线性无关),从而得到一个新的可行基,这就是基变换。

2.基本思想

单纯形法的基本思想是:给出一种规则,使由 LP问题一个基本可行解(极点)转移到另一个基本可行解,目标函数值是减小的,而且两个基本可行解之间的转换是容易实现的,经过有限次迭代,即可求得所需的最优基本可行解。

再具体一点来说:
对于一个优化问题 { m i n   f = c T x s . t .   A x = b , x ≥ 0   (1) \begin{cases}min \,f=c^Tx \\ s.t.\,Ax=b,& \text{$x\geq0 $ } \end{cases} \tag{1} {minf=cTxs.t.Ax=b,x(1) 这里 b ≥ 0 , r a n k ( A ) = m b\geq 0,rank(A)=m b0,rank(A)=m,记 A = [ B , N ] = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ] = ( p 1 , p 2 , . . . , p n ) A=[B,N]=\begin{bmatrix} a_{11} & a_{12}&...& a_{1n} \\ a_{21} & a_{22}&...& a_{2n} \\ ... &...&...& ...\\a_{m1} & a_{m2}&...& a_{mn}\end{bmatrix}=(p_1,p_2,...,p_n) A=[B,N]=a11a21...am1a12a22...am2............a1na2n...amn=(p1,p2,...,pn),其中 r a n k ( B ) = m rank(B)=m rank(B)=m,即B为初始可行基。
x ( 0 ) = [ B − 1 b 0 ] x^{(0)}=\begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} x(0)=[B1b0]为问题(1)的一个初始可行解,则在 x ( 0 ) x^{(0)} x(0)处的目标函数值
f 0 = c T x ( 0 ) = [ c B , c N ] [ B − 1 b 0 ] = c B B − 1 b f_0=c^Tx^{(0)}=[c_B,c_N]\begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}=c_BB^{-1}b f0=cTx(0)=[cB,cN][B1b0]=cBB1b
若初始可行解 x ( 0 ) x^{(0)} x(0)不是最优解,则需要找到一个新的基本可行解,即进行基变换
x = [ x B x N ] x=\begin{bmatrix} x_B \\ x_N \end{bmatrix} x=[xBxN]为任意一个可行解,则由 A x = b Ax=b Ax=b得: x B = B − 1 b − B − 1 N x N x_B=B^{-1}b-B^{-1}Nx_N xB=B1bB1NxN,在该 x x x点的目标函数值为: f = c T x = c B x B + c N x N = c B ( B − 1 b − B − 1 N x N ) + c N x N = c B B − 1 b − ( c B B − 1 N − c N ) x N = c B ( B − 1 b − B − 1 N x N ) + c N x N = c B B − 1 b − ∑ j ∈ R N ( c B B − 1 p j − c j ) x j = f 0 − ∑ j ∈ R N ( z j − c j ) x j f=c^Tx=c_Bx_B+c_Nx_N=c_B(B^{-1}b-B^{-1}Nx_N)+c_Nx_N=c_BB^{-1}b-(c_BB^{-1}N-c_N)x_N=c_B(B^{-1}b-B^{-1}Nx_N)+c_Nx_N=c_BB^{-1}b-\sum_{j\in R_N}(c_BB^{-1}p_j-c_j)x_j=f_0-\sum_{j\in R_N}(z_j-c_j)x_j f=cTx=cBxB+cNxN=cB(B1bB1NxN)+cNxN=cBB1b(cBB1NcN)xN=cB(B1bB1NxN)+cNxN=cBB1bjRN(cBB1pjcj)xj=f0jRN(zjcj)xj,其中 R N R_N RN为非基变量的下标集以及 z = c B B − 1 p j z=c_BB^{-1}p_j z=cBB1pj。最后的可行解函数值为: f = f 0 − ∑ j ∈ R N ( z j − c j ) x j f=f_0-\sum_{j\in R_N}(z_j-c_j)x_j f=f0jRN(zjcj)xj因而,适当选取非基变量 x j ( j ∈ R N ) x_j(j\in R_N) xj(jRN)的数值就有可能使得 ∑ j ∈ R N ( z j − c j ) x j > 0 \sum_{j\in R_N}(z_j-c_j)x_j >0 jRN(zjcj)xj>0从而达到目标函数下降的目的。为此,我们在原来的 n − m n-m nm个非基变量中,令 n − m − 1 n-m-1 nm1个变量仍取0值,而那个“天选之子”(比如 x k x_k xk)取正值,只要 ( z k − c k ) > 0 (z_k-c_k)>0 (zkck)>0就能达到优化的目的。
至于这个 k k k怎么选,怎么生成新的基本可行解,可以看看上一节的线性规划基本定理的证明。下面要具体说说怎么算。

3.算法步骤

Step1: (当然要先化为标准型)然后找到初始可行基B,解 B x B = b Bx_B=b BxB=b,求得 x B = B − 1 b = b ~ x_B=B^{-1}b=\tilde{b} xB=B1b=b~,令 x N = 0 x_N=0 xN=0,确定初始可行解。并计算初始目标函数值 f = c B x B , f=c_Bx_B, f=cBxB其中 c B c_B cB代表 x B x_B xB对应的目标函数系数向量。

Step2: 求单纯形乘子 w = c B B − 1 w=c_BB^{-1} w=cBB1。对于所有非基变量,计算判别(检验)数 ( z j − c j ) = w p j − c j (z_j-c_j)=wp_j-c_j (zjcj)=wpjcj 。令 z k − c k = m a x j ∈ R N z_k-c_k=max_{j \in R_N} zkck=maxjRN{ z j − c j z_j-c_j zjcj}, ( R N (R_N RN是非基变量的下标集)若 z k − c k ≤ 0 z_k-c_k \leq 0 zkck0,则对于所有非基变量 z j − c j ≤ 0 z_j-c_j \leq 0 zjcj0,而对于基变量的判别数总是零,因此停止计算,现行基本可行解是最优解。否则,进行下一步。

Step3: B k y k = p k B_ky_k=p_k Bkyk=pk,得到 y k = B k − 1 p k y_k=B_k^{-1}p_k yk=Bk1pk,若 y k ≤ 0 y_k\leq 0 yk0,即 y k y_k yk的每一个分量均为非正数,则停止计算:问题不存在有限最优解。否则,进行第四步。

Step4: 确定下标 r : b r ~ y r k = m i n r:\frac{\tilde{b_r}}{y_{rk}}=min ryrkbr~=min{ b i ~ y i k ∣ y i k > 0 \frac{\tilde{b_i}}{y_{ik}}|y_{ik}>0 yikbi~yik>0}。 x B r x_{Br} xBr为离基变量, x k x_{k} xk为进基变量。用 p k p_k pk替换 p B r p_{Br} pBr,得到新的矩阵B,返回第一步。

考试计算中,我们经常使用单纯形表完成上述计算。
不懂?
看栗子就完事了!
在这里插入图片描述

4.算例

在这里插入图片描述

ONE: 化为标准型,并找到初始可行基B确定对应的基本可行解 x B x_B xB
标准型如下:
在这里插入图片描述

从标准型容易得到一个以 B = I 2 B=I_2 B=I2为基底的基本可行解: x B = B − 1 b = [ 80 , 90 ] T , x = [ x N , x B ] = [ 0 , 0 , 80 , 90 ] T , c B = [ 0 , 0 ] , x_B=B^{-1}b=[80,90]^T,x=[x_N,x_B]=[0,0,80,90]^T,c_B=[0,0], xB=B1b=[80,90]T,x=[xN,xB]=[0,0,80,90]T,cB=[0,0],非基变量的下标集 R N = R_N= RN={ 1 , 2 1,2 1,2}。

TWO:计算初始检验数 q j q_j qj及目标函数值 z 0 z_0 z0,建立初始单纯形表
计算检验数 q j = z j − c j = w p j − c j = c B B − 1 p j − c j q_j=z_j-c_j=wp_j-c_j=c_BB^{-1}p_j-c_j qj=zjcj=wpjcj=cBB1pjcj和目标函数值 z 0 = f = c B T x B = c B B − 1 b z_0=f=c_B^Tx_B=c_BB^{-1}b z0=f=cBTxB=cBB1b,建立如下图所示的单纯形表
在这里插入图片描述
具体对于本题来说这里 w = c B B − 1 = 0 w=c_BB^{-1}=0 w=cBB1=0,因此初始检验数为 q j = − c j q_j=-c_j qj=cj,目标函数值为 z 0 = f 0 = c B T x B = 0 , z_0=f_0=c_B^Tx_B=0, z0=f0=cBTxB=0,因此初始单纯形表如下:
在这里插入图片描述
THREE:决定进基矢量 a k a_k ak
取最大检验数 q 2 = 16 > 0 q_2=16>0 q2=16>0所对应的变量作为进基矢(变)量,即 k = 2 k=2 k=2

FOUR:决定离基矢量 a r a_r ar和主元素 y r k y_{rk} yrk
y i j , j ≠ 0 y_{ij},j\not=0 yij,j=0即单纯形表第i行的第j个变量对应列的对应元素, y i 0 y_{i0} yi0即单纯形表最后一列( B − 1 b B^{-1}b B1b)的第i行元素。
首先计算比值 y i 0 / y i k y_{i0}/y_ik yi0/yik,这里 k = 2 , i = 1 , 2 k=2,i=1,2 k=2,i=1,2。结果为:
y 10 y 12 = 80 / 4 = 20 ; \frac{y_{10}}{y_{12}}=80/4=20; y12y10=80/4=20 y 20 y 22 = 90 / 3 = 30 \frac{y_{20}}{y_{22}}=90/3=30 y22y20=90/3=30
故由 r : b r ~ y r k = m i n r:\frac{\tilde{b_r}}{y_{rk}}=min ryrkbr~=min{ b i ~ y i k ∣ y i k > 0 \frac{\tilde{b_i}}{y_{ik}}|y_{ik}>0 yikbi~yik>0}。得 r = 1 r=1 r=1。因此主元素为 y 12 y_{12} y12,离基变量为 x 3 x_3 x3

FIVE:以 y r k y_{rk} yrk为主元素更新(进行Gauss消元)单纯形表
对单纯形表进行初等行变换使得主元素 y r k y_{rk} yrk所在位置变为1,且对应列的其他行都变为0。
对于本题将第一行除以4,然后分别乘以(-3)和(-16)加到第2、3行,完成第一次迭代,函数值减小为为-320。
在这里插入图片描述
然后回到THREE进行下次迭代。
那么什么时候停止呢?下面来说
在这里插入图片描述

5.算法收敛性

以极小化问题为例,最大检验数 q r = m a x j ∈ R N ( z j − c j ) = m a x j ∈ R N ( w p j − c j ) = m a x j ∈ R N ( c B B − 1 p j − c j ) q_r=max_{j\in R^N}(z_j-c_j)=max_{j\in R^N}(wp_j-c_j)=max_{j\in R^N}(c_BB^{-1}p_j-c_j) qr=maxjRN(zjcj)=maxjRN(wpjcj)=maxjRN(cBB1pjcj)每次迭代必然出现下面三种情形:
(1) q r ≤ 0 q_r\leq 0 qr0:这时现行基本可行解就是最优解。
(2) q r > 0 , y r k ≤ 0 q_r> 0,y_{rk}\leq0 qr>0,yrk0:当 x k x_k xk无线增大时,目标函数趋于负无穷,因此解无解。
(3) q r > 0 , y r k > 0 q_r> 0,y_{rk}>0 qr>0,yrk>0:这时求出的新的基本可行解,经迭代使目标函数下降。
收敛定理: 对于非退化问题(即存在非退化基本可行解),单纯形方法经有限次迭代后达到最优基本可行解,或得出无界的结论。
所以上面的那个例子在迭代了2次后最大检验数 q r ≤ 0 q_r\leq 0 qr0,迭代停止,此时的解即为最优解。
在这里插入图片描述

6.Matlab实现

这里实现已经化为标准型且约束方程是规范形式。其实后面学习我们知道其他线性优化问题均可以通过M法或两阶段法转化至此。
通过上述算例的步骤一步一步实现即可,不算困难。大致可分四步:1.输入问题;2.建立初始单纯形表;3.迭代寻找最优解;4.输出结果。
因为这次期末时间过于紧张,这里先把代码总表给出,之后再按下面的步骤走一遍。
在这里插入图片描述

1.输入问题

2.建立初始单纯形表

3.迭代寻找最优解

4.输出结果

5.附录(代码总表)

% 输入一标准型,实现程序求求解
% 若有m个方程,则初始基本可行解为E,且位于最后mxm矩阵
% matlab代码
% Made by Fei

% 返回最优解(变量名和对应取值)和最优函数值
%c,A,b分别为目标函数系数向量,约束函数系数矩阵,约束函数右端常数

function [Y,T] = Mysolve(c,A,b)

% 预备工作
% 求出变量个数以及方程个数
n_numx = size(A,2);
n_eq = rank(A);
% 记录初始基本可行解及相应的变量所在位置
XB = b;
XB_index=[];
for i=1:n_eq
    XB_index(i)=n_numx-n_eq+i;
end
% 求出单纯形乘子
cB = c(:,(n_numx-n_eq+1):n_numx);
w = cB;
% 求出初始函数值
f0 = cB*XB;
% 求出n_numx个检验数
z=[];
for i=1:n_numx
    if(i>n_numx-n_eq)
        z(i)=0;
    else
        temp = w*A(:,(n_numx-n_eq-i+1))-c(:,i);
        z(i)=temp;
    end
end

% 开始迭代求解
flag=0;
while(flag==0)
    % 判断检验数是否全部全部为非正数,如是则停止迭代平输出结果
    flag=1;
    for i=1:n_numx
        temp=z(i);
        if(temp>0)
            flag=0;
        end
    end
    % 如果全负则输出结果
    if(flag==1)
        Y=[XB_index;XB']; % 变量名及所对应的取值 
        T=f0; % 最优目标函数值
        break
    end
    
    %求解过程
    % 找出最大检验数及并确定进基变量
    Max=z(1);
    index_in=1;
     for i=2:n_numx
        if(z(i)>Max)
            Max=z(i);
            index_in=i;
        end
     end
     % 找出yr以及出基变量
     y=b./A(:,index_in);
     index_out_H=0;
     for i=1:n_eq
         if(y(i)<=0)
            continue;
         else
             min=y(i);
             % 分别记下对应的行以及出基变量
             index_out_H=i;
             index_out=XB_index(i);
             break;
         end
     end
     % 如果yi均为负数则无最优解,结束迭代
     % 否则寻找yr及出基变量
     if(index_out_H==0)
         fprintf("该问题无最优值解");
         break;
     else
         for i=index_out_H:n_eq
             if(y(i)<min)
                 min=y(i);
                 index_out_H=i;
                 index_out=XB_index(i);
             end
         end
     end
     % 到这里我们已经找到了进基变量与出基变量的位置,及相应的y和检验数z
     
     % 接下来我们尝试进行转轴运算更新单纯形表
     b(index_out_H)=b(index_out_H)./A(index_out_H,index_in);
     A(index_out_H,:)=A(index_out_H,:)./A(index_out_H,index_in);
     % 更新A和B-1b
     for i=1:n_eq
         if(i==index_out_H)
             continue;
         else
             temp=A(i,index_in);
             A(i,:)=A(i,:)-temp.*A(index_out_H,:);
             b(i)=b(i)-temp.*b(index_out_H);
         end
     end
     % 更新检验数z和目标函数值f0
     temp=z(index_in);
     for i=1:n_numx
         z(i)=z(i)-temp*A(index_out_H,i);
     end
     f0=f0-temp*b(index_out_H);
     % 更新XB(基本可行解)以及对应的取值
     for i=1:n_eq
         if(XB_index(i)==index_out)
             XB_index(i)=index_in;
         else
             continue;
         end
     end
     XB=b;
end

以上文的例子输入演示结果:
在这里插入图片描述
本节完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值