文章目录
在介绍乘积拓扑之前,我们要先学习3个概念:生成子集族、笛卡儿积和投射。
1.前置知识
1.1生成子集族
设 Λ \Lambda Λ是 X X X的一个子集族,定义 Λ \Lambda Λ生成的子集族 Λ ‾ \overline{\Lambda} Λ如下: Λ ‾ = { U ⊂ X ∣ U 是 Λ 的 若 干 成 员 的 闭 集 } = { U ⊂ X ∣ ∀ x ∈ U , ∃ B ∈ Λ , s . t . x ∈ B ⊂ U } \overline{\Lambda}=\lbrace U \subset X | U是\Lambda的若干成员的闭集 \rbrace \\ =\lbrace U \subset X | \forall x \in U,\exists B\in\Lambda,s.t. x\in B \subset U \rbrace Λ={U⊂X∣U是Λ的若干成员的闭集}={U⊂X∣∀x∈U,∃B∈Λ,s.t.x∈B⊂U}显然, Λ ⊂ Λ ‾ \Lambda \subset \overline{\Lambda} Λ⊂Λ且 ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} ∅∈Λ。(因为“若干”嘛,可以是全部也可以是0个咯)
1.2 笛卡儿积
设 X 1 X_1 X1和 X 2 X_2 X2是两个集合,定义二者的笛卡儿积为: X 1 × X 2 = { ( x 1 , x 2 ) ∣ x 1 ∈ X 1 , x 2 ∈ X 2 } X_1 \times X_2 = \lbrace(x_1,x_2)|x_1 \in X_1, x_2 \in X_2 \rbrace X1×X2={(x1,x2)∣x1∈X1,x2∈X2}
1.3 投射
规定
j
i
:
X
1
×
X
2
→
X
i
;
j
i
(
x
1
,
x
2
)
=
x
i
(
i
=
1
,
2
)
j_i: X_1 \times X_2 \rightarrow X_i; j_i(x_1,x_2)=x_i(i=1,2)
ji:X1×X2→Xi;ji(x1,x2)=xi(i=1,2),称
j
i
j_i
ji为
X
1
×
X
2
X_1 \times X_2
X1×X2到
X
i
X_i
Xi的投射。
如果
A
i
⊂
X
i
(
i
=
1
,
2
)
A_i \subset X_i(i=1,2)
Ai⊂Xi(i=1,2),则
A
1
×
A
2
⊂
X
1
×
X
2
A_1 \times A_2 \subset X_1 \times X_2
A1×A2⊂X1×X2,并且容易验证得:
A
i
,
B
i
⊂
X
i
(
i
=
1
,
2
)
A_i ,B_i\subset X_i(i=1,2)
Ai,Bi⊂Xi(i=1,2)
(
A
1
×
A
2
)
⋂
(
B
1
×
B
2
)
=
(
A
1
⋂
B
1
)
×
(
A
2
⋂
B
2
)
(A_1 \times A_2) \bigcap (B_1 \times B_2) = (A_1 \bigcap B_1) \times (A_2 \bigcap B_2)
(A1×A2)⋂(B1×B2)=(A1⋂B1)×(A2⋂B2)
2.乘积空间
2.1 乘积拓扑
当然乘积空间也是拓扑空间的一种,要得到该空间,我们需要先定义在
X
1
×
X
2
X_1 \times X_2
X1×X2上的一个拓扑
τ
\tau
τ:
τ
\tau
τ是使
j
1
,
j
2
j_1,j_2
j1,j2都连续的最小拓扑。
首先考察
τ
\tau
τ中包含哪些元素(集合)。
∀
U
i
∈
τ
i
(
i
=
1
,
2
)
\forall U_i \in \tau_i(i=1,2)
∀Ui∈τi(i=1,2),若
j
1
,
j
2
j_1,j_2
j1,j2都连续,则
j
i
−
1
(
U
i
)
∈
τ
j_i^{-1}(U_i) \in \tau
ji−1(Ui)∈τ,所以
U
1
×
U
2
=
(
U
1
⋂
X
1
)
×
(
X
2
⋂
U
2
)
=
(
U
1
×
X
2
)
⋂
(
X
1
×
U
2
)
=
j
1
−
1
(
U
1
)
⋂
j
2
−
1
(
U
2
)
∈
τ
U_1 \times U_2=(U_1 \bigcap X_1) \times (X_2 \bigcap U_2)=(U_1 \times X_2) \bigcap (X_1 \times U_2)=j_1^{-1}(U_1) \bigcap j_2^{-1}(U_2) \in \tau
U1×U2=(U1⋂X1)×(X2⋂U2)=(U1×X2)⋂(X1×U2)=j1−1(U1)⋂j2−1(U2)∈τ这里如果一个
U
i
=
X
i
(
∈
τ
i
)
U_i=X_i (\in \tau_i)
Ui=Xi(∈τi),则(以
U
2
=
X
2
U_2= X_2
U2=X2为例)
U
1
×
U
2
=
U
1
×
X
2
=
j
1
−
1
(
U
1
)
∈
τ
U_1 \times U_2=U_1 \times X_2=j_1^{-1}(U_1) \in \tau
U1×U2=U1×X2=j1−1(U1)∈τ。
构造
X
1
×
X
2
X_1 \times X_2
X1×X2的子集族
Λ
=
{
U
1
×
U
2
∣
U
i
∈
τ
i
,
i
=
1
,
2
}
\Lambda =\lbrace U_1 \times U_2 | U_i \in \tau_i,i=1,2 \rbrace
Λ={U1×U2∣Ui∈τi,i=1,2},则所要构造的拓扑
τ
\tau
τ显然是包含
Λ
\Lambda
Λ的,根据拓扑公理(2),
τ
\tau
τ也包含
Λ
‾
\overline\Lambda
Λ。因此只要证明
Λ
‾
\overline \Lambda
Λ是
X
1
×
X
2
X_1 \times X_2
X1×X2的拓扑,则
Λ
‾
\overline \Lambda
Λ即为所要求的乘积拓扑。
定理:
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ是
X
1
×
X
2
X_1 \times X_2
X1×X2的乘积拓扑。
证明:由上面分析知,只需要证明
Λ
‾
\overline \Lambda
Λ是
X
1
×
X
2
X_1 \times X_2
X1×X2的一个拓扑即可。
因为
X
1
∈
τ
1
X_1 \in \tau_1
X1∈τ1且
X
2
∈
τ
2
X_2 \in \tau_2
X2∈τ2,所以
X
1
×
X
2
∈
Λ
⊂
Λ
‾
X_1 \times X_2 \in \Lambda \subset \overline{\Lambda}
X1×X2∈Λ⊂Λ,另外由生成子集族的定义知当“若干”为0时:
∅
∈
Λ
‾
\varnothing \in \overline{\Lambda}
∅∈Λ。所以
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ满足拓扑公理(1)。
由生成子集族的定义知,
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ的任意并仍在
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ中,即
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ满足拓扑公理(2)。
设
∀
W
,
W
′
∈
τ
\forall W,W' \in \tau
∀W,W′∈τ,
∀
(
x
1
,
x
2
)
∈
W
⋂
W
′
\forall (x_1,x_2) \in W \bigcap W'
∀(x1,x2)∈W⋂W′,则
(
x
1
,
x
2
)
∈
W
(x_1,x_2) \in W
(x1,x2)∈W,从而有
U
i
∈
τ
i
U_i \in \tau_i
Ui∈τi,使得
(
x
1
,
x
2
)
∈
U
1
×
U
2
⊂
W
(x_1,x_2) \in U_1 \times U_2 \subset W
(x1,x2)∈U1×U2⊂W;同理
(
x
1
,
x
2
)
∈
W
′
(x_1,x_2) \in W'
(x1,x2)∈W′,
(
x
1
,
x
2
)
∈
U
1
′
×
U
2
′
⊂
W
′
(x_1,x_2) \in U'_1 \times U'_2 \subset W'
(x1,x2)∈U1′×U2′⊂W′。于是有
(
x
1
,
x
2
)
∈
(
U
1
×
U
2
)
⋂
(
U
1
′
×
U
2
′
)
=
(
U
1
⋂
U
1
′
)
×
(
U
2
⋂
U
2
′
)
∈
Λ
⊂
Λ
‾
=
τ
(x_1,x_2) \in (U_1 \times U_2) \bigcap (U_1' \times U_2')=(U_1 \bigcap U'_1) \times (U_2 \bigcap U'_2) \in \Lambda \subset \overline{\Lambda}=\tau
(x1,x2)∈(U1×U2)⋂(U1′×U2′)=(U1⋂U1′)×(U2⋂U2′)∈Λ⊂Λ=τ。所以
∀
W
,
W
′
∈
τ
,
W
⋂
W
′
∈
τ
\forall W,W' \in \tau,W \bigcap W' \in \tau
∀W,W′∈τ,W⋂W′∈τ。即
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ满足拓扑公理(3)。
由上证明得
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ是
X
1
×
X
2
X_1 \times X_2
X1×X2的乘积拓扑。
2.2 乘积空间的定义
称
τ
=
Λ
‾
\tau=\overline \Lambda
τ=Λ是
X
1
×
X
2
X_1 \times X_2
X1×X2的乘积拓扑,称
(
X
1
×
X
2
,
Λ
‾
)
(X_1 \times X_2,\overline \Lambda)
(X1×X2,Λ)为
(
X
1
,
τ
1
)
(X_1, \tau_1)
(X1,τ1)和
(
X
2
,
τ
2
)
(X_2, \tau_2)
(X2,τ2)的乘积空间。简记为
X
1
×
X
2
X_1 \times X_2
X1×X2。
用类似的方法可以定义有限个拓扑空间
(
X
1
,
X
2
,
.
.
.
,
X
n
)
(X_1,X_2,...,X_n)
(X1,X2,...,Xn)的乘积空间为
(
X
1
×
X
2
×
.
.
.
×
X
n
,
τ
)
(X_1\times X_2\times...\times X_n, \tau)
(X1×X2×...×Xn,τ)。
τ
=
Λ
‾
\tau=\overline{\Lambda}
τ=Λ为
Λ
=
{
U
1
×
U
2
×
.
.
.
×
U
n
∣
U
i
∈
τ
i
,
i
=
1
,
2
,
.
.
.
,
n
}
\Lambda=\lbrace U_1 \times U_2 \times ... \times U_n | U_i \in \tau_i,i=1,2,...,n \rbrace
Λ={U1×U2×...×Un∣Ui∈τi,i=1,2,...,n}的生成的子集族。
2.3 乘积空间的性质
设Y是任一拓扑空间,
f
:
Y
→
X
1
×
X
2
f:Y \rightarrow X_1 \times X_2
f:Y→X1×X2是一映射。称
f
i
=
j
i
∘
f
:
Y
→
X
i
(
i
=
1
,
2
)
f_i = j_i\circ f: Y \rightarrow X_i(i=1,2)
fi=ji∘f:Y→Xi(i=1,2)为
f
f
f的两个分量(映射)。
定理: 对于任何的拓扑空间
Y
Y
Y和映射
f
:
Y
→
X
1
×
X
2
f:Y \rightarrow X_1 \times X_2
f:Y→X1×X2,
f
f
f连续
⟺
\iff
⟺
f
f
f的分量连续。
证明:
必要性显然。
因为
f
i
=
j
i
∘
f
f_i = j_i\circ f
fi=ji∘f,
f
,
j
i
f,j_i
f,ji均为连续映射,其连续映射的复合映射也连续,所以
f
i
f_i
fi也连续。
充分性:
设
U
i
∈
τ
i
,
i
=
1
,
2
U_i \in \tau_i,i=1,2
Ui∈τi,i=1,2,则
f
−
1
(
U
)
f^{-1}(U)
f−1(U)都是Y的开集。容易看出
f
(
y
)
∈
U
1
×
U
2
⟺
f
i
(
y
)
∈
U
i
f(y) \in U_1 \times U_2 \iff f_i(y) \in U_i
f(y)∈U1×U2⟺fi(y)∈Ui,因此
f
−
1
(
U
1
×
U
2
)
=
f
1
−
1
(
U
1
×
U
2
)
⋂
f
2
−
1
(
U
1
×
U
2
)
f^{-1}(U_1 \times U_2) = f_1^{-1}(U_1 \times U_2) \bigcap f_2^{-1}(U_1 \times U_2)
f−1(U1×U2)=f1−1(U1×U2)⋂f2−1(U1×U2)为Y中的开集。所以对于
X
1
×
X
2
X_1 \times X_2
X1×X2中的一般的开集
W
W
W,有
W
=
⋃
α
∈
Λ
U
1
,
α
×
U
2
,
α
W = \bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha}
W=⋃α∈ΛU1,α×U2,α,其中
U
i
,
α
∈
τ
i
U_{i,\alpha} \in \tau_i
Ui,α∈τi,所以
f
−
1
(
W
)
=
f
−
1
(
⋃
α
∈
Λ
U
1
,
α
×
U
2
,
α
)
f^{-1}(W)=f^{-1}(\bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha})
f−1(W)=f−1(α∈Λ⋃U1,α×U2,α)为开集,所以当
f
1
,
f
2
f_1,f_2
f1,f2连续时,
f
f
f也连续。
3.拓扑基
(🔺这个是重点哦~)
3.1 拓扑基的定义
(1)称集合
X
X
X的一个子集族
Λ
\Lambda
Λ为集合
X
X
X的拓扑基,如果
Λ
\Lambda
Λ生成的子集族
Λ
‾
\overline{\Lambda}
Λ是该集合
X
X
X的一个拓扑。
(2)称拓扑空间
(
X
,
τ
)
(X, \tau)
(X,τ)的子集族
Λ
\Lambda
Λ为这个拓扑空间的拓扑基,如果
Λ
‾
=
τ
\overline{\Lambda} = \tau
Λ=τ。
注意这里一个是集合上的拓扑基,一个是拓扑空间的拓扑基,不一样的哦~
3.2 集合上的拓扑基判定条件
子集族
Λ
\Lambda
Λ是集合
X
X
X的拓扑基的充要条件为:
(
1
)
U
B
∈
Λ
B
=
X
(1) U_{B \in \Lambda} B =X
(1)UB∈ΛB=X
(
2
)
(2)
(2)若
B
1
,
B
2
∈
Λ
B_1,B_2 \in \Lambda
B1,B2∈Λ,则
B
1
⋂
B
2
∈
Λ
‾
B_1 \bigcap B_2 \in \overline{\Lambda}
B1⋂B2∈Λ(即
∀
x
∈
B
1
⋂
B
2
\forall x \in B_1 \bigcap B_2
∀x∈B1⋂B2,则存在
B
∈
Λ
B \in \Lambda
B∈Λ,使得
x
∈
B
⊂
B
1
⋂
B
2
)
x \in B \subset B_1 \bigcap B_2)
x∈B⊂B1⋂B2)。
证明:必要性显然。
充分性的证明。
由(1)知
X
∈
Λ
⊂
Λ
‾
X \in \Lambda \subset \overline{\Lambda}
X∈Λ⊂Λ,又因为
∅
∈
Λ
‾
\varnothing \in \overline{\Lambda}
∅∈Λ,所以
Λ
\Lambda
Λ满足拓扑公理(1)。
再由生成子集族的定义知,
Λ
‾
\overline{\Lambda}
Λ的任意元素的并仍在
Λ
‾
\overline{\Lambda}
Λ中,即
Λ
‾
\overline{\Lambda}
Λ满足拓扑公理(2)。
设
U
,
U
′
U,U'
U,U′为
Λ
‾
\overline{\Lambda}
Λ的两个任意元素,则由生成子集族的定义知:
U
=
⋃
β
∈
Λ
U
β
U= \bigcup_{\beta \in \Lambda} U_{\beta}
U=⋃β∈ΛUβ,
U
′
=
⋃
β
∈
Λ
U
β
′
U'= \bigcup_{\beta \in \Lambda} U'_{\beta}
U′=⋃β∈ΛUβ′,其中
U
β
,
U
β
′
∈
Λ
U_{\beta},U'_{\beta} \in \Lambda
Uβ,Uβ′∈Λ。所以
U
⋂
U
′
=
(
⋃
β
∈
Λ
U
β
)
⋂
(
⋃
β
∈
Λ
U
β
′
)
=
⋃
β
∈
Λ
(
U
β
⋂
U
β
′
)
U \bigcap U' = (\bigcup_{\beta \in \Lambda} U_{\beta}) \bigcap (\bigcup_{\beta \in \Lambda} U'_{\beta}) = \bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta})
U⋂U′=(⋃β∈ΛUβ)⋂(⋃β∈ΛUβ′)=⋃β∈Λ(Uβ⋂Uβ′),由(2)知
U
β
⋂
U
β
′
∈
Λ
‾
U_{\beta} \bigcap U'_{\beta} \in \overline{\Lambda}
Uβ⋂Uβ′∈Λ,由
Λ
‾
\overline{\Lambda}
Λ的定义知:
⋃
β
∈
Λ
(
U
β
⋂
U
β
′
)
=
U
⋂
U
′
∈
Λ
‾
\bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta})=U \bigcap U' \in \overline{\Lambda}
⋃β∈Λ(Uβ⋂Uβ′)=U⋂U′∈Λ,所以
Λ
‾
\overline{\Lambda}
Λ满足拓扑公理(3)。
综上所述,条件(1)(2)是子集族
Λ
\Lambda
Λ是集合
X
X
X的拓扑基的充分条件。
3.3 拓扑空间上的拓扑基判定条件
子集族
Λ
\Lambda
Λ是拓扑空间
(
X
,
τ
)
(X,\tau)
(X,τ)的拓扑基的充要条件为:
(
1
)
Λ
⊂
τ
(1) \Lambda \subset \tau
(1)Λ⊂τ(即
Λ
\Lambda
Λ成员都是开集)
(
2
)
τ
⊂
Λ
‾
(2) \tau \subset \overline{\Lambda}
(2)τ⊂Λ(即每个开集都是
Λ
\Lambda
Λ中一些成员的并集)
证明:必要性显然。充分性证明如下:
由拓扑公理(2)知,
τ
\tau
τ生成的子集族
τ
‾
=
τ
\overline{\tau}=\tau
τ=τ。再由条件(1)
Λ
⊂
τ
\Lambda \subset \tau
Λ⊂τ得:
Λ
‾
⊂
τ
‾
=
τ
\overline{\Lambda} \subset \overline{\tau}=\tau
Λ⊂τ=τ。再有条件(2)得
Λ
‾
=
τ
\overline{\Lambda}=\tau
Λ=τ,所以子集族
Λ
\Lambda
Λ是拓扑空间
(
X
,
τ
)
(X,\tau)
(X,τ)的拓扑基。