【拓扑学知识】3.乘积空间与拓扑基


在介绍乘积拓扑之前,我们要先学习3个概念:生成子集族、笛卡儿积和投射。

1.前置知识

1.1生成子集族

Λ \Lambda Λ X X X的一个子集族,定义 Λ \Lambda Λ生成的子集族 Λ ‾ \overline{\Lambda} Λ如下: Λ ‾ = { U ⊂ X ∣ U 是 Λ 的 若 干 成 员 的 闭 集 } = { U ⊂ X ∣ ∀ x ∈ U , ∃ B ∈ Λ , s . t . x ∈ B ⊂ U } \overline{\Lambda}=\lbrace U \subset X | U是\Lambda的若干成员的闭集 \rbrace \\ =\lbrace U \subset X | \forall x \in U,\exists B\in\Lambda,s.t. x\in B \subset U \rbrace Λ={UXUΛ}={UXxU,BΛ,s.t.xBU}显然, Λ ⊂ Λ ‾ \Lambda \subset \overline{\Lambda} ΛΛ ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ。(因为“若干”嘛,可以是全部也可以是0个咯)

1.2 笛卡儿积

X 1 X_1 X1 X 2 X_2 X2是两个集合,定义二者的笛卡儿积为: X 1 × X 2 = { ( x 1 , x 2 ) ∣ x 1 ∈ X 1 , x 2 ∈ X 2 } X_1 \times X_2 = \lbrace(x_1,x_2)|x_1 \in X_1, x_2 \in X_2 \rbrace X1×X2={(x1,x2)x1X1,x2X2}

1.3 投射

规定 j i : X 1 × X 2 → X i ; j i ( x 1 , x 2 ) = x i ( i = 1 , 2 ) j_i: X_1 \times X_2 \rightarrow X_i; j_i(x_1,x_2)=x_i(i=1,2) ji:X1×X2Xi;ji(x1,x2)=xi(i=1,2),称 j i j_i ji X 1 × X 2 X_1 \times X_2 X1×X2 X i X_i Xi投射
如果 A i ⊂ X i ( i = 1 , 2 ) A_i \subset X_i(i=1,2) AiXi(i=1,2),则 A 1 × A 2 ⊂ X 1 × X 2 A_1 \times A_2 \subset X_1 \times X_2 A1×A2X1×X2,并且容易验证得: A i , B i ⊂ X i ( i = 1 , 2 ) A_i ,B_i\subset X_i(i=1,2) Ai,BiXi(i=1,2) ( A 1 × A 2 ) ⋂ ( B 1 × B 2 ) = ( A 1 ⋂ B 1 ) × ( A 2 ⋂ B 2 ) (A_1 \times A_2) \bigcap (B_1 \times B_2) = (A_1 \bigcap B_1) \times (A_2 \bigcap B_2) (A1×A2)(B1×B2)=A1B1)×(A2B2)

2.乘积空间

2.1 乘积拓扑

当然乘积空间也是拓扑空间的一种,要得到该空间,我们需要先定义在 X 1 × X 2 X_1 \times X_2 X1×X2上的一个拓扑 τ \tau τ
τ \tau τ是使 j 1 , j 2 j_1,j_2 j1,j2都连续的最小拓扑。
首先考察 τ \tau τ中包含哪些元素(集合)。
∀ U i ∈ τ i ( i = 1 , 2 ) \forall U_i \in \tau_i(i=1,2) Uiτi(i=1,2),若 j 1 , j 2 j_1,j_2 j1,j2都连续,则 j i − 1 ( U i ) ∈ τ j_i^{-1}(U_i) \in \tau ji1(Ui)τ,所以 U 1 × U 2 = ( U 1 ⋂ X 1 ) × ( X 2 ⋂ U 2 ) = ( U 1 × X 2 ) ⋂ ( X 1 × U 2 ) = j 1 − 1 ( U 1 ) ⋂ j 2 − 1 ( U 2 ) ∈ τ U_1 \times U_2=(U_1 \bigcap X_1) \times (X_2 \bigcap U_2)=(U_1 \times X_2) \bigcap (X_1 \times U_2)=j_1^{-1}(U_1) \bigcap j_2^{-1}(U_2) \in \tau U1×U2=(U1X1)×(X2U2)=(U1×X2)(X1×U2)=j11(U1)j21(U2)τ这里如果一个 U i = X i ( ∈ τ i ) U_i=X_i (\in \tau_i) Ui=Xi(τi),则(以 U 2 = X 2 U_2= X_2 U2=X2为例) U 1 × U 2 = U 1 × X 2 = j 1 − 1 ( U 1 ) ∈ τ U_1 \times U_2=U_1 \times X_2=j_1^{-1}(U_1) \in \tau U1×U2=U1×X2=j11(U1)τ
构造 X 1 × X 2 X_1 \times X_2 X1×X2的子集族 Λ = { U 1 × U 2 ∣ U i ∈ τ i , i = 1 , 2 } \Lambda =\lbrace U_1 \times U_2 | U_i \in \tau_i,i=1,2 \rbrace Λ={U1×U2Uiτi,i=1,2},则所要构造的拓扑 τ \tau τ显然是包含 Λ \Lambda Λ的,根据拓扑公理(2), τ \tau τ也包含 Λ ‾ \overline\Lambda Λ。因此只要证明 Λ ‾ \overline \Lambda Λ X 1 × X 2 X_1 \times X_2 X1×X2的拓扑,则 Λ ‾ \overline \Lambda Λ即为所要求的乘积拓扑。

定理: τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑。
证明:由上面分析知,只需要证明 Λ ‾ \overline \Lambda Λ X 1 × X 2 X_1 \times X_2 X1×X2的一个拓扑即可。
因为 X 1 ∈ τ 1 X_1 \in \tau_1 X1τ1 X 2 ∈ τ 2 X_2 \in \tau_2 X2τ2,所以 X 1 × X 2 ∈ Λ ⊂ Λ ‾ X_1 \times X_2 \in \Lambda \subset \overline{\Lambda} X1×X2ΛΛ,另外由生成子集族的定义知当“若干”为0时: ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ。所以 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(1)。
由生成子集族的定义知, τ = Λ ‾ \tau=\overline \Lambda τ=Λ的任意并仍在 τ = Λ ‾ \tau=\overline \Lambda τ=Λ中,即 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(2)。
∀ W , W ′ ∈ τ \forall W,W' \in \tau W,Wτ, ∀ ( x 1 , x 2 ) ∈ W ⋂ W ′ \forall (x_1,x_2) \in W \bigcap W' (x1,x2)WW,则 ( x 1 , x 2 ) ∈ W (x_1,x_2) \in W (x1,x2)W,从而有 U i ∈ τ i U_i \in \tau_i Uiτi,使得 ( x 1 , x 2 ) ∈ U 1 × U 2 ⊂ W (x_1,x_2) \in U_1 \times U_2 \subset W (x1,x2)U1×U2W;同理 ( x 1 , x 2 ) ∈ W ′ (x_1,x_2) \in W' (x1,x2)W ( x 1 , x 2 ) ∈ U 1 ′ × U 2 ′ ⊂ W ′ (x_1,x_2) \in U'_1 \times U'_2 \subset W' (x1,x2)U1×U2W。于是有 ( x 1 , x 2 ) ∈ ( U 1 × U 2 ) ⋂ ( U 1 ′ × U 2 ′ ) = ( U 1 ⋂ U 1 ′ ) × ( U 2 ⋂ U 2 ′ ) ∈ Λ ⊂ Λ ‾ = τ (x_1,x_2) \in (U_1 \times U_2) \bigcap (U_1' \times U_2')=(U_1 \bigcap U'_1) \times (U_2 \bigcap U'_2) \in \Lambda \subset \overline{\Lambda}=\tau (x1,x2)(U1×U2)(U1×U2)=(U1U1)×(U2U2)ΛΛ=τ。所以 ∀ W , W ′ ∈ τ , W ⋂ W ′ ∈ τ \forall W,W' \in \tau,W \bigcap W' \in \tau W,Wτ,WWτ。即 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(3)。
由上证明得 τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑。

2.2 乘积空间的定义

τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑,称 ( X 1 × X 2 , Λ ‾ ) (X_1 \times X_2,\overline \Lambda) (X1×X2,Λ) ( X 1 , τ 1 ) (X_1, \tau_1) (X1,τ1) ( X 2 , τ 2 ) (X_2, \tau_2) (X2,τ2)乘积空间。简记为 X 1 × X 2 X_1 \times X_2 X1×X2
用类似的方法可以定义有限个拓扑空间 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的乘积空间为 ( X 1 × X 2 × . . . × X n , τ ) (X_1\times X_2\times...\times X_n, \tau) (X1×X2×...×Xn,τ) τ = Λ ‾ \tau=\overline{\Lambda} τ=Λ Λ = { U 1 × U 2 × . . . × U n ∣ U i ∈ τ i , i = 1 , 2 , . . . , n } \Lambda=\lbrace U_1 \times U_2 \times ... \times U_n | U_i \in \tau_i,i=1,2,...,n \rbrace Λ={U1×U2×...×UnUiτi,i=1,2,...,n}的生成的子集族。

2.3 乘积空间的性质

设Y是任一拓扑空间, f : Y → X 1 × X 2 f:Y \rightarrow X_1 \times X_2 f:YX1×X2是一映射。称 f i = j i ∘ f : Y → X i ( i = 1 , 2 ) f_i = j_i\circ f: Y \rightarrow X_i(i=1,2) fi=jif:YXi(i=1,2) f f f的两个分量(映射)
定理: 对于任何的拓扑空间 Y Y Y和映射 f : Y → X 1 × X 2 f:Y \rightarrow X_1 \times X_2 f:YX1×X2, f f f连续    ⟺    \iff f f f的分量连续。
证明:
必要性显然。
因为 f i = j i ∘ f f_i = j_i\circ f fi=jif f , j i f,j_i f,ji均为连续映射,其连续映射的复合映射也连续,所以 f i f_i fi也连续。
充分性:
U i ∈ τ i , i = 1 , 2 U_i \in \tau_i,i=1,2 Uiτi,i=1,2,则 f − 1 ( U ) f^{-1}(U) f1(U)都是Y的开集。容易看出 f ( y ) ∈ U 1 × U 2    ⟺    f i ( y ) ∈ U i f(y) \in U_1 \times U_2 \iff f_i(y) \in U_i f(y)U1×U2fi(y)Ui,因此 f − 1 ( U 1 × U 2 ) = f 1 − 1 ( U 1 × U 2 ) ⋂ f 2 − 1 ( U 1 × U 2 ) f^{-1}(U_1 \times U_2) = f_1^{-1}(U_1 \times U_2) \bigcap f_2^{-1}(U_1 \times U_2) f1(U1×U2)=f11(U1×U2)f21(U1×U2)为Y中的开集。所以对于 X 1 × X 2 X_1 \times X_2 X1×X2中的一般的开集 W W W,有 W = ⋃ α ∈ Λ U 1 , α × U 2 , α W = \bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha} W=αΛU1,α×U2,α,其中 U i , α ∈ τ i U_{i,\alpha} \in \tau_i Ui,ατi,所以 f − 1 ( W ) = f − 1 ( ⋃ α ∈ Λ U 1 , α × U 2 , α ) f^{-1}(W)=f^{-1}(\bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha}) f1(W)=f1(αΛU1,α×U2,α)为开集,所以当 f 1 , f 2 f_1,f_2 f1,f2连续时, f f f也连续。

3.拓扑基

(🔺这个是重点哦~)

3.1 拓扑基的定义

(1)称集合 X X X的一个子集族 Λ \Lambda Λ集合 X X X的拓扑基,如果 Λ \Lambda Λ生成的子集族 Λ ‾ \overline{\Lambda} Λ该集合 X X X的一个拓扑
(2)称拓扑空间 ( X , τ ) (X, \tau) (X,τ)的子集族 Λ \Lambda Λ为这个拓扑空间的拓扑基,如果 Λ ‾ = τ \overline{\Lambda} = \tau Λ=τ
注意这里一个是集合上的拓扑基,一个是拓扑空间的拓扑基,不一样的哦~

3.2 集合上的拓扑基判定条件

子集族 Λ \Lambda Λ是集合 X X X的拓扑基的充要条件为:
( 1 ) U B ∈ Λ B = X (1) U_{B \in \Lambda} B =X (1)UBΛB=X
( 2 ) (2) (2) B 1 , B 2 ∈ Λ B_1,B_2 \in \Lambda B1,B2Λ,则 B 1 ⋂ B 2 ∈ Λ ‾ B_1 \bigcap B_2 \in \overline{\Lambda} B1B2Λ(即 ∀ x ∈ B 1 ⋂ B 2 \forall x \in B_1 \bigcap B_2 xB1B2,则存在 B ∈ Λ B \in \Lambda BΛ,使得 x ∈ B ⊂ B 1 ⋂ B 2 ) x \in B \subset B_1 \bigcap B_2) xBB1B2)
证明:必要性显然。
充分性的证明。
由(1)知 X ∈ Λ ⊂ Λ ‾ X \in \Lambda \subset \overline{\Lambda} XΛΛ,又因为 ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ,所以 Λ \Lambda Λ满足拓扑公理(1)。
再由生成子集族的定义知, Λ ‾ \overline{\Lambda} Λ的任意元素的并仍在 Λ ‾ \overline{\Lambda} Λ中,即 Λ ‾ \overline{\Lambda} Λ满足拓扑公理(2)。
U , U ′ U,U' U,U Λ ‾ \overline{\Lambda} Λ的两个任意元素,则由生成子集族的定义知: U = ⋃ β ∈ Λ U β U= \bigcup_{\beta \in \Lambda} U_{\beta} U=βΛUβ U ′ = ⋃ β ∈ Λ U β ′ U'= \bigcup_{\beta \in \Lambda} U'_{\beta} U=βΛUβ,其中 U β , U β ′ ∈ Λ U_{\beta},U'_{\beta} \in \Lambda Uβ,UβΛ。所以 U ⋂ U ′ = ( ⋃ β ∈ Λ U β ) ⋂ ( ⋃ β ∈ Λ U β ′ ) = ⋃ β ∈ Λ ( U β ⋂ U β ′ ) U \bigcap U' = (\bigcup_{\beta \in \Lambda} U_{\beta}) \bigcap (\bigcup_{\beta \in \Lambda} U'_{\beta}) = \bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta}) UU=(βΛUβ)(βΛUβ)=βΛ(UβUβ),由(2)知 U β ⋂ U β ′ ∈ Λ ‾ U_{\beta} \bigcap U'_{\beta} \in \overline{\Lambda} UβUβΛ,由 Λ ‾ \overline{\Lambda} Λ的定义知: ⋃ β ∈ Λ ( U β ⋂ U β ′ ) = U ⋂ U ′ ∈ Λ ‾ \bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta})=U \bigcap U' \in \overline{\Lambda} βΛ(UβUβ)=UUΛ,所以 Λ ‾ \overline{\Lambda} Λ满足拓扑公理(3)。
综上所述,条件(1)(2)是子集族 Λ \Lambda Λ是集合 X X X的拓扑基的充分条件。

3.3 拓扑空间上的拓扑基判定条件

子集族 Λ \Lambda Λ是拓扑空间 ( X , τ ) (X,\tau) (X,τ)的拓扑基的充要条件为:
( 1 ) Λ ⊂ τ (1) \Lambda \subset \tau (1)Λτ(即 Λ \Lambda Λ成员都是开集)
( 2 ) τ ⊂ Λ ‾ (2) \tau \subset \overline{\Lambda} (2)τΛ(即每个开集都是 Λ \Lambda Λ中一些成员的并集)
证明:必要性显然。充分性证明如下:
由拓扑公理(2)知, τ \tau τ生成的子集族 τ ‾ = τ \overline{\tau}=\tau τ=τ。再由条件(1) Λ ⊂ τ \Lambda \subset \tau Λτ得: Λ ‾ ⊂ τ ‾ = τ \overline{\Lambda} \subset \overline{\tau}=\tau Λτ=τ。再有条件(2)得 Λ ‾ = τ \overline{\Lambda}=\tau Λ=τ,所以子集族 Λ \Lambda Λ是拓扑空间 ( X , τ ) (X,\tau) (X,τ)的拓扑基。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值