【拓扑学知识】3.乘积空间与拓扑基


在介绍乘积拓扑之前,我们要先学习3个概念:生成子集族、笛卡儿积和投射。

1.前置知识

1.1生成子集族

Λ \Lambda Λ X X X的一个子集族,定义 Λ \Lambda Λ生成的子集族 Λ ‾ \overline{\Lambda} Λ如下: Λ ‾ = { U ⊂ X ∣ U 是 Λ 的 若 干 成 员 的 闭 集 } = { U ⊂ X ∣ ∀ x ∈ U , ∃ B ∈ Λ , s . t . x ∈ B ⊂ U } \overline{\Lambda}=\lbrace U \subset X | U是\Lambda的若干成员的闭集 \rbrace \\ =\lbrace U \subset X | \forall x \in U,\exists B\in\Lambda,s.t. x\in B \subset U \rbrace Λ={UXUΛ}={UXxU,BΛ,s.t.xBU}显然, Λ ⊂ Λ ‾ \Lambda \subset \overline{\Lambda} ΛΛ ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ。(因为“若干”嘛,可以是全部也可以是0个咯)

1.2 笛卡儿积

X 1 X_1 X1 X 2 X_2 X2是两个集合,定义二者的笛卡儿积为: X 1 × X 2 = { ( x 1 , x 2 ) ∣ x 1 ∈ X 1 , x 2 ∈ X 2 } X_1 \times X_2 = \lbrace(x_1,x_2)|x_1 \in X_1, x_2 \in X_2 \rbrace X1×X2={(x1,x2)x1X1,x2X2}

1.3 投射

规定 j i : X 1 × X 2 → X i ; j i ( x 1 , x 2 ) = x i ( i = 1 , 2 ) j_i: X_1 \times X_2 \rightarrow X_i; j_i(x_1,x_2)=x_i(i=1,2) ji:X1×X2Xi;ji(x1,x2)=xi(i=1,2),称 j i j_i ji X 1 × X 2 X_1 \times X_2 X1×X2 X i X_i Xi投射
如果 A i ⊂ X i ( i = 1 , 2 ) A_i \subset X_i(i=1,2) AiXi(i=1,2),则 A 1 × A 2 ⊂ X 1 × X 2 A_1 \times A_2 \subset X_1 \times X_2 A1×A2X1×X2,并且容易验证得: A i , B i ⊂ X i ( i = 1 , 2 ) A_i ,B_i\subset X_i(i=1,2) Ai,BiXi(i=1,2) ( A 1 × A 2 ) ⋂ ( B 1 × B 2 ) = ( A 1 ⋂ B 1 ) × ( A 2 ⋂ B 2 ) (A_1 \times A_2) \bigcap (B_1 \times B_2) = (A_1 \bigcap B_1) \times (A_2 \bigcap B_2) (A1×A2)(B1×B2)=A1B1)×(A2B2)

2.乘积空间

2.1 乘积拓扑

当然乘积空间也是拓扑空间的一种,要得到该空间,我们需要先定义在 X 1 × X 2 X_1 \times X_2 X1×X2上的一个拓扑 τ \tau τ
τ \tau τ是使 j 1 , j 2 j_1,j_2 j1,j2都连续的最小拓扑。
首先考察 τ \tau τ中包含哪些元素(集合)。
∀ U i ∈ τ i ( i = 1 , 2 ) \forall U_i \in \tau_i(i=1,2) Uiτi(i=1,2),若 j 1 , j 2 j_1,j_2 j1,j2都连续,则 j i − 1 ( U i ) ∈ τ j_i^{-1}(U_i) \in \tau ji1(Ui)τ,所以 U 1 × U 2 = ( U 1 ⋂ X 1 ) × ( X 2 ⋂ U 2 ) = ( U 1 × X 2 ) ⋂ ( X 1 × U 2 ) = j 1 − 1 ( U 1 ) ⋂ j 2 − 1 ( U 2 ) ∈ τ U_1 \times U_2=(U_1 \bigcap X_1) \times (X_2 \bigcap U_2)=(U_1 \times X_2) \bigcap (X_1 \times U_2)=j_1^{-1}(U_1) \bigcap j_2^{-1}(U_2) \in \tau U1×U2=(U1X1)×(X2U2)=(U1×X2)(X1×U2)=j11(U1)j21(U2)τ这里如果一个 U i = X i ( ∈ τ i ) U_i=X_i (\in \tau_i) Ui=Xi(τi),则(以 U 2 = X 2 U_2= X_2 U2=X2为例) U 1 × U 2 = U 1 × X 2 = j 1 − 1 ( U 1 ) ∈ τ U_1 \times U_2=U_1 \times X_2=j_1^{-1}(U_1) \in \tau U1×U2=U1×X2=j11(U1)τ
构造 X 1 × X 2 X_1 \times X_2 X1×X2的子集族 Λ = { U 1 × U 2 ∣ U i ∈ τ i , i = 1 , 2 } \Lambda =\lbrace U_1 \times U_2 | U_i \in \tau_i,i=1,2 \rbrace Λ={U1×U2Uiτi,i=1,2},则所要构造的拓扑 τ \tau τ显然是包含 Λ \Lambda Λ的,根据拓扑公理(2), τ \tau τ也包含 Λ ‾ \overline\Lambda Λ。因此只要证明 Λ ‾ \overline \Lambda Λ X 1 × X 2 X_1 \times X_2 X1×X2的拓扑,则 Λ ‾ \overline \Lambda Λ即为所要求的乘积拓扑。

定理: τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑。
证明:由上面分析知,只需要证明 Λ ‾ \overline \Lambda Λ X 1 × X 2 X_1 \times X_2 X1×X2的一个拓扑即可。
因为 X 1 ∈ τ 1 X_1 \in \tau_1 X1τ1 X 2 ∈ τ 2 X_2 \in \tau_2 X2τ2,所以 X 1 × X 2 ∈ Λ ⊂ Λ ‾ X_1 \times X_2 \in \Lambda \subset \overline{\Lambda} X1×X2ΛΛ,另外由生成子集族的定义知当“若干”为0时: ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ。所以 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(1)。
由生成子集族的定义知, τ = Λ ‾ \tau=\overline \Lambda τ=Λ的任意并仍在 τ = Λ ‾ \tau=\overline \Lambda τ=Λ中,即 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(2)。
∀ W , W ′ ∈ τ \forall W,W' \in \tau W,Wτ, ∀ ( x 1 , x 2 ) ∈ W ⋂ W ′ \forall (x_1,x_2) \in W \bigcap W' (x1,x2)WW,则 ( x 1 , x 2 ) ∈ W (x_1,x_2) \in W (x1,x2)W,从而有 U i ∈ τ i U_i \in \tau_i Uiτi,使得 ( x 1 , x 2 ) ∈ U 1 × U 2 ⊂ W (x_1,x_2) \in U_1 \times U_2 \subset W (x1,x2)U1×U2W;同理 ( x 1 , x 2 ) ∈ W ′ (x_1,x_2) \in W' (x1,x2)W ( x 1 , x 2 ) ∈ U 1 ′ × U 2 ′ ⊂ W ′ (x_1,x_2) \in U'_1 \times U'_2 \subset W' (x1,x2)U1×U2W。于是有 ( x 1 , x 2 ) ∈ ( U 1 × U 2 ) ⋂ ( U 1 ′ × U 2 ′ ) = ( U 1 ⋂ U 1 ′ ) × ( U 2 ⋂ U 2 ′ ) ∈ Λ ⊂ Λ ‾ = τ (x_1,x_2) \in (U_1 \times U_2) \bigcap (U_1' \times U_2')=(U_1 \bigcap U'_1) \times (U_2 \bigcap U'_2) \in \Lambda \subset \overline{\Lambda}=\tau (x1,x2)(U1×U2)(U1×U2)=(U1U1)×(U2U2)ΛΛ=τ。所以 ∀ W , W ′ ∈ τ , W ⋂ W ′ ∈ τ \forall W,W' \in \tau,W \bigcap W' \in \tau W,Wτ,WWτ。即 τ = Λ ‾ \tau=\overline \Lambda τ=Λ满足拓扑公理(3)。
由上证明得 τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑。

2.2 乘积空间的定义

τ = Λ ‾ \tau=\overline \Lambda τ=Λ X 1 × X 2 X_1 \times X_2 X1×X2的乘积拓扑,称 ( X 1 × X 2 , Λ ‾ ) (X_1 \times X_2,\overline \Lambda) (X1×X2,Λ) ( X 1 , τ 1 ) (X_1, \tau_1) (X1,τ1) ( X 2 , τ 2 ) (X_2, \tau_2) (X2,τ2)乘积空间。简记为 X 1 × X 2 X_1 \times X_2 X1×X2
用类似的方法可以定义有限个拓扑空间 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的乘积空间为 ( X 1 × X 2 × . . . × X n , τ ) (X_1\times X_2\times...\times X_n, \tau) (X1×X2×...×Xn,τ) τ = Λ ‾ \tau=\overline{\Lambda} τ=Λ Λ = { U 1 × U 2 × . . . × U n ∣ U i ∈ τ i , i = 1 , 2 , . . . , n } \Lambda=\lbrace U_1 \times U_2 \times ... \times U_n | U_i \in \tau_i,i=1,2,...,n \rbrace Λ={U1×U2×...×UnUiτi,i=1,2,...,n}的生成的子集族。

2.3 乘积空间的性质

设Y是任一拓扑空间, f : Y → X 1 × X 2 f:Y \rightarrow X_1 \times X_2 f:YX1×X2是一映射。称 f i = j i ∘ f : Y → X i ( i = 1 , 2 ) f_i = j_i\circ f: Y \rightarrow X_i(i=1,2) fi=jif:YXi(i=1,2) f f f的两个分量(映射)
定理: 对于任何的拓扑空间 Y Y Y和映射 f : Y → X 1 × X 2 f:Y \rightarrow X_1 \times X_2 f:YX1×X2, f f f连续    ⟺    \iff f f f的分量连续。
证明:
必要性显然。
因为 f i = j i ∘ f f_i = j_i\circ f fi=jif f , j i f,j_i f,ji均为连续映射,其连续映射的复合映射也连续,所以 f i f_i fi也连续。
充分性:
U i ∈ τ i , i = 1 , 2 U_i \in \tau_i,i=1,2 Uiτi,i=1,2,则 f − 1 ( U ) f^{-1}(U) f1(U)都是Y的开集。容易看出 f ( y ) ∈ U 1 × U 2    ⟺    f i ( y ) ∈ U i f(y) \in U_1 \times U_2 \iff f_i(y) \in U_i f(y)U1×U2fi(y)Ui,因此 f − 1 ( U 1 × U 2 ) = f 1 − 1 ( U 1 × U 2 ) ⋂ f 2 − 1 ( U 1 × U 2 ) f^{-1}(U_1 \times U_2) = f_1^{-1}(U_1 \times U_2) \bigcap f_2^{-1}(U_1 \times U_2) f1(U1×U2)=f11(U1×U2)f21(U1×U2)为Y中的开集。所以对于 X 1 × X 2 X_1 \times X_2 X1×X2中的一般的开集 W W W,有 W = ⋃ α ∈ Λ U 1 , α × U 2 , α W = \bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha} W=αΛU1,α×U2,α,其中 U i , α ∈ τ i U_{i,\alpha} \in \tau_i Ui,ατi,所以 f − 1 ( W ) = f − 1 ( ⋃ α ∈ Λ U 1 , α × U 2 , α ) f^{-1}(W)=f^{-1}(\bigcup_{\alpha \in \Lambda} U_{1,\alpha} \times U_{2,\alpha}) f1(W)=f1(αΛU1,α×U2,α)为开集,所以当 f 1 , f 2 f_1,f_2 f1,f2连续时, f f f也连续。

3.拓扑基

(🔺这个是重点哦~)

3.1 拓扑基的定义

(1)称集合 X X X的一个子集族 Λ \Lambda Λ集合 X X X的拓扑基,如果 Λ \Lambda Λ生成的子集族 Λ ‾ \overline{\Lambda} Λ该集合 X X X的一个拓扑
(2)称拓扑空间 ( X , τ ) (X, \tau) (X,τ)的子集族 Λ \Lambda Λ为这个拓扑空间的拓扑基,如果 Λ ‾ = τ \overline{\Lambda} = \tau Λ=τ
注意这里一个是集合上的拓扑基,一个是拓扑空间的拓扑基,不一样的哦~

3.2 集合上的拓扑基判定条件

子集族 Λ \Lambda Λ是集合 X X X的拓扑基的充要条件为:
( 1 ) U B ∈ Λ B = X (1) U_{B \in \Lambda} B =X (1)UBΛB=X
( 2 ) (2) (2) B 1 , B 2 ∈ Λ B_1,B_2 \in \Lambda B1,B2Λ,则 B 1 ⋂ B 2 ∈ Λ ‾ B_1 \bigcap B_2 \in \overline{\Lambda} B1B2Λ(即 ∀ x ∈ B 1 ⋂ B 2 \forall x \in B_1 \bigcap B_2 xB1B2,则存在 B ∈ Λ B \in \Lambda BΛ,使得 x ∈ B ⊂ B 1 ⋂ B 2 ) x \in B \subset B_1 \bigcap B_2) xBB1B2)
证明:必要性显然。
充分性的证明。
由(1)知 X ∈ Λ ⊂ Λ ‾ X \in \Lambda \subset \overline{\Lambda} XΛΛ,又因为 ∅ ∈ Λ ‾ \varnothing \in \overline{\Lambda} Λ,所以 Λ \Lambda Λ满足拓扑公理(1)。
再由生成子集族的定义知, Λ ‾ \overline{\Lambda} Λ的任意元素的并仍在 Λ ‾ \overline{\Lambda} Λ中,即 Λ ‾ \overline{\Lambda} Λ满足拓扑公理(2)。
U , U ′ U,U' U,U Λ ‾ \overline{\Lambda} Λ的两个任意元素,则由生成子集族的定义知: U = ⋃ β ∈ Λ U β U= \bigcup_{\beta \in \Lambda} U_{\beta} U=βΛUβ U ′ = ⋃ β ∈ Λ U β ′ U'= \bigcup_{\beta \in \Lambda} U'_{\beta} U=βΛUβ,其中 U β , U β ′ ∈ Λ U_{\beta},U'_{\beta} \in \Lambda Uβ,UβΛ。所以 U ⋂ U ′ = ( ⋃ β ∈ Λ U β ) ⋂ ( ⋃ β ∈ Λ U β ′ ) = ⋃ β ∈ Λ ( U β ⋂ U β ′ ) U \bigcap U' = (\bigcup_{\beta \in \Lambda} U_{\beta}) \bigcap (\bigcup_{\beta \in \Lambda} U'_{\beta}) = \bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta}) UU=(βΛUβ)(βΛUβ)=βΛ(UβUβ),由(2)知 U β ⋂ U β ′ ∈ Λ ‾ U_{\beta} \bigcap U'_{\beta} \in \overline{\Lambda} UβUβΛ,由 Λ ‾ \overline{\Lambda} Λ的定义知: ⋃ β ∈ Λ ( U β ⋂ U β ′ ) = U ⋂ U ′ ∈ Λ ‾ \bigcup_{\beta \in \Lambda}(U_{\beta} \bigcap U'_{\beta})=U \bigcap U' \in \overline{\Lambda} βΛ(UβUβ)=UUΛ,所以 Λ ‾ \overline{\Lambda} Λ满足拓扑公理(3)。
综上所述,条件(1)(2)是子集族 Λ \Lambda Λ是集合 X X X的拓扑基的充分条件。

3.3 拓扑空间上的拓扑基判定条件

子集族 Λ \Lambda Λ是拓扑空间 ( X , τ ) (X,\tau) (X,τ)的拓扑基的充要条件为:
( 1 ) Λ ⊂ τ (1) \Lambda \subset \tau (1)Λτ(即 Λ \Lambda Λ成员都是开集)
( 2 ) τ ⊂ Λ ‾ (2) \tau \subset \overline{\Lambda} (2)τΛ(即每个开集都是 Λ \Lambda Λ中一些成员的并集)
证明:必要性显然。充分性证明如下:
由拓扑公理(2)知, τ \tau τ生成的子集族 τ ‾ = τ \overline{\tau}=\tau τ=τ。再由条件(1) Λ ⊂ τ \Lambda \subset \tau Λτ得: Λ ‾ ⊂ τ ‾ = τ \overline{\Lambda} \subset \overline{\tau}=\tau Λτ=τ。再有条件(2)得 Λ ‾ = τ \overline{\Lambda}=\tau Λ=τ,所以子集族 Λ \Lambda Λ是拓扑空间 ( X , τ ) (X,\tau) (X,τ)的拓扑基。

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
拓扑学引论江泽涵.pdf》是一本关于拓扑学的入门教材,作者是江泽涵教授。拓扑学是数学的一个分支,研究的是空间的性质和结构。这本教材介绍了拓扑学本概念、定理和证明方法。 教材首先介绍了集合论的知识,因为拓扑学的核心是研究集合的性质。随后,教材引入了拓扑空间的概念,包括开集、闭集、连通性和紧性等。这些概念是拓扑学研究的石,为后续的学习打下了坚实的础。 在介绍了拓扑空间后,教材详细讨论了拓扑空间之间的映射,包括连续性和同胚性。连续映射是拓扑学中非常重要的概念,它能保持空间的连通性和紧性等性质。同胚的概念则描述了两个空间之间的一一对应关系,且保持了空间拓扑结构。理解了映射的性质,可以更深入地研究拓扑空间之间的关系。 教材的后半部分讨论了一些拓扑学的经典定理,如Brouwer不动点定理、Jordan曲线定理等。这些定理是拓扑学的重要成果,揭示了空间的一些有趣的性质和结构。定理的证明过程往往非常精妙,需要一定的运用数学技巧和逻辑推理能力。 正因为如此,《拓扑学引论江泽涵.pdf》是一本对拓扑学感兴趣的人必读的教材。它系统地介绍了拓扑学本概念和方法,为读者提供了一个深入学习拓扑学的途径。无论是对于学术研究还是实际应用,掌握拓扑学本原理都是必不可少的。该教材的出版对于推动拓扑学教育和研究的发展起到了积极的推动作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值