一、线性规划

       线性规划是最优化问题的一种特殊情形,实质是从多个变量中选取一组合适的变量作为解,使得这组变量满足一组确定的线性式(约束条件),而且使一个线性函数(目标函数)达到最优。

一、线性规划的数学模型

满足以下三个条件的数学模型称为线性规划:
       1,该问题可以用一组变量(决策变量)来表示一个解决方案。
       2,有目标函数,是决策变量的线性函数。
       3,有约束条件,可用一组线性等式或者不等式来表示。

线性规划问题的一般形式为:
在这里插入图片描述
式中, c 1 , c 2 , . . . , c n c_1,c_2,...,c_n c1,c2,...,cn叫做目标函数系数或者价值系数, b 1 , b 2 , . . . b n b_1,b_2,...b_n b1,b2,...bn叫做资源系数。

二、线性规划问题的标准形式

       线性规划问题的标准形式是目标函数要求最小,所有约束条件都是等式约束,且所有的决策变量都是非负的。
在这里插入图片描述
       其化简形式为:
在这里插入图片描述
       用矩阵形式表示:
m i n f ( X ) = c ∗ X minf(X)=c*X minf(X)=cX
s . t . A ∗ X = b , X > = 0 s.t. A*X=b,X>=0 s.t.AX=b,X>=0
任意的线性规划问题都可以转化为标准形式:
       1,若目标函数求求最大值,则只需要将目标函数的系数乘-1,就可以变为求解最小值问题,求得其最优解后,把最优目标函数值反号即得原问题得目标函数值。
       2,若约束条件为不等式,若是“<=“则加入松弛变量,若是”>=”,则加入剩余变量,将不等式变为等式。
       3,对于无约束得变量 x k x_k xk,可令 x k = x 1 − x 2 , ( x 1 , x 2 > = 0 ) x_k=x_1-x_2,(x_1,x_2>=0) xk=x1x2,(x1,x2>=0)

三、线性规划问题的求解

       线性规划问题得可行解有无穷多个,与某一凸集上得无穷多个点一一对应,可以证明,最优解必定在凸集得顶点,而顶点得个数是有限的,单纯形法是采用跨越式得方式,高速求解最优解得一种方法。

3.1 基本思路

1,首先将线性规划问题转化为标准形式;
2,求解初始可行解;
3,判断是否为最优解;
4,如果不是最优,则迭代到其相邻得基本可行解并在此检验。
       单纯形法把寻优的目标集中在所有基本可行解中,是从一个初始的基本可行解出发,寻找一条达到最优基本可行解的最佳途径。
在这里插入图片描述

3.2 单纯形表

在这里插入图片描述
为了解释以上单纯形表中的各符号意思,举一个具体的题目来说明:
在这里插入图片描述
1,首先确定其各矩阵
C = ( − 5 , − 2 , − 3 , 1 , − 1 ) C=(-5,-2,-3,1,-1) C=(5,2,3,1,1)
在这里插入图片描述
2,得到初始单纯形表
在这里插入图片描述
初始基本可行解为 X = [ 0 , 0 , 0 , 8 , 7 ] , Z = 1 X=[0,0,0,8,7],Z=1 X=[0,0,0,8,7],Z=1

3,变换
在这里插入图片描述
        x 3 x_3 x3换入变量, x 4 x_4 x4换出变量。

在这里插入图片描述
       得到可行解 X = [ 0 , 0 , 4 , 0 , 3 ] , Z = − 15 X=[0,0,4,0,3],Z=-15 X=[0,0,4,0,3],Z=15

在这里插入图片描述

        x 1 x_1 x1换入变量, x 5 x_5 x5换出变量。

在这里插入图片描述
       得到最优解 X = [ 6 / 5 , 0 , 17 / 5 , 0 , 0 ] , Z = − 81 / 5 X=[6/5,0,17/5,0,0],Z=-81/5 X=[6/5,0,17/5,0,0],Z=81/5

四、matlab求解

       首先要将原问题转化为标准形式的线性规划:
在这里插入图片描述
       基本函数形式为
[ x , f v a l ] = l i n p r o g ( c , A , b , A e q , b e q , l b , u b , X 0 , O P T I O N S ) [x,fval]=linprog(c,A,b,Aeq,beq,lb,ub,X_0,OPTIONS) [x,fval]=linprog(c,A,b,Aeq,beq,lb,ub,X0,OPTIONS)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值