线性规划的案例
- 我们人体每天需要一定量的两种维生素,VcV_cVc和VbV_bVb.假设这些维生素可以从牛奶和鸡蛋中得到
需求确定每天喝奶的量x和吃蛋的量y.目标是以最低的可能的花费购买这些食物,而满足最低限度的维生素需求量。
可以得到如下的数学形式:
Min3x+2.5yMin 3x+2.5yMin3x+2.5y 极小化目标函数
s.t2x+4y>=40s.t 2x+4y>=40s.t2x+4y>=40 可行区域
3x+2y>=503x+2y>=503x+2y>=50
x,y>=0x,y>=0x,y>=0 可行解
- 某工厂计划生成甲乙两种产品。所需的设备台时及AB两种原材料消耗详见下表:
该工厂每生产一件甲产品可获利2元,每生产一件乙产品可获利3元,问如何安排生产计划,可使利润最大?
设x1,x2分别为甲。乙产品的数量,则有
目标函数 maxz=2x1+3x2max z = 2x_1+3x_2maxz=2x1+3x2
约束条件 x1+2x2<=8x_1+2x_2 <=8x1+2x2<=8
4x1<=164x_1 <=16