严格劣势策略和弱劣势策略

本文的pdf文件:link

一、问题重述

       1,严格劣势策略与弱劣势策略:严格劣势策略的定义是什么?弱劣势策略的定义是什么?请用一个包含两个人参与的博弈矩阵来举例说明,要求其中一个参与者有三个策略且三者之一为严格劣势策略,另一个参与者有三个策略但三者之一为弱劣势策略,请指出你所举例子中的劣势策略。
       2,迭代剔除(弱)劣势策略:请看下面的博弈
在这里插入图片描述
       (1)这个博弈中是否存在严格劣势策略和弱劣势策略,如果存在,请指出并说明。
       (2)剔除严格劣势策略和弱劣势策略之后,在简化的博弈中是否还有劣势策略呢?如果是,请指出并说明,最后哪些策略是不会被剔除的?
       (3)回顾你第一次提出劣势策略时,哪些策略是弱势策略?并给出解释,把它与第二次剔除的劣势策略比较,从中你能得出关于迭代剔除劣势策略的何种结论?

二、问题解决

2.1 问题一

       严格劣势策略:全面严格劣势策略,是指被全面的严格优势策略压住的那个策略,也就是说不是严格优势策略以外的策略,所谓的严格优势策略是指不论对方采取什么策略,采取的这个策略总比采取其他任何策略都好的策略。
在这里插入图片描述
       对于上述收益矩阵来说,假设对于参与者A来说,策略1为严格劣势策略,则其满足所有的A2>A1,即对于A参与者,选择策略1,无论参与者B选择策略1还是策略2,参与者A选择策略1的收益均小于参与者A选择策略2的收益。

       弱劣势策略:对于参与人的策略来说,如果还存在另外的一个比这个更好的策略,并且它的全部参与人的当前策略与其它策略的组合相比,都不比参与人的当前策略差的情况下,则可以认为参与人的当前策略比另一个策略稍差,另一个策略就是当前策略的弱优势策略。
在这里插入图片描述
       对于上述收益矩阵来说,假设对于参与者A来说,策略1是弱劣势策略,则其满足A2>=A1, 即对于A参与者,选择策略1,无论参与者B选择策略1还是策略2,参与者A选择策略1的收益均小于等于参与者A选择策略2的收益。
在这里插入图片描述
       对于上述收益矩阵,有两个参与者,每个参与者均有三种可选择策略,其中对于参与者1进行分析,若是参与者2选择策略L,则参与者1应该选择策略D使得自己收益最大为3;
       若参与者2选择策略C,则参与者1会选择策略D使得自己的收益最大为3;若参与者2选择策略R,则参与者1会选择策略M,使得自己的最大收益为2。综上,对于参与者1来说,不论参与者2选择何种策略,自己都不会选择策略T,因为策略T的收益严格小于M和D策略,所以对于参与者1来说,策略T为其严格劣势策略。
       分析参与者2,若是参与者1选择策略T,则参与者2选择策略L,C,R没有区别,收益均为1;若是参与者1选择策略M,则参与者2会选择策略R,若是参与者1选择策略D,则参与者2会选择策略C。综上,对于参与者2来说,策略L为其弱劣势策略。
       综上,在此博弈中,T是参与者1的严格劣势策略,L是参与者2的弱劣势策略。

2.2 问题二

       (1)这个博弈中是否存在严格劣势策略和弱劣势策略,如果存在,请指出并说明。
在这里插入图片描述
       答:此博弈中不存在严格劣势策略,对于参与者1来说,策略M是弱劣势策略。对于参与者2来说,策略C是弱劣势策略。

       (2)剔除严格劣势策略和弱劣势策略之后,在简化的博弈中是否还有劣势策略呢?如果是,请指出并说明,最后哪些策略是不会被剔除的?
       答:剔除严格劣势策略和弱劣势策略之后的收益矩阵如下所示:
在这里插入图片描述
       如上表所示,在剔除一次严格劣势策略和弱劣势策略之后的收益矩阵依然存在弱劣势策略,对于参与者1来说,策略D是弱劣势策略,对于参与者2来说策略R为弱劣势策略。
       在此剔除后得到如下矩阵:
在这里插入图片描述
       最后只有一个策略未被剔除,此策略为本次博弈中的纳什均衡状态。

       (3)回顾你第一次提出劣势策略时,哪些策略是弱势策略?并给出解释,把它与第二次剔除的劣势策略比较,从中你能得出关于迭代剔除劣势策略的何种结论?
       答:第一次剔除了参与者1的M策略,参与者2的C策略,首先分析参与者1,
在这里插入图片描述
       当参与者2选择策略L时,无法判断参与者1的选择,当参与者2选择策略C时,参与者1选择策略D,当参与者2选择策略R时,参与者1选择策略T,所以策略M为参与者1的弱劣势策略。参与者2分析同理。
       结论:当循环剔除所有的严格劣势策略和弱劣势策略后,剩余的状态为纳什均衡状态。

  • 11
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值