【无标题】

本文探讨了基于动态博弈和信号理论的欺骗防御策略设计,通过多智能体模型模拟攻击者和防御者之间的攻防过程。攻击者采用强化学习的智能渗透攻击,而防御者也使用强化学习进行欺骗防御。文章详细描述了多阶段攻防模型和智能体的学习过程以最大化长期奖励。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欺骗防御策略设计

智能渗透攻击-攻防博弈设计

基于动态博弈和信号基本理论,定义攻击者为信号博弈的领先者及信号发送者,防御者为跟随者和信号接收者。定义多阶段攻防博弈模型M表示为五元组M=(A, F, T, P, R ),攻击方、防御方、回合数、攻击方渗透概率(提权操作概率&扫描操作概率)、收益函数。
A为攻击者集合,多智能体渗透攻击建模:
攻击方采用基于强化学习的多智能体智能渗透攻击(人工智能扫描),智能体在给定时间内通过不
断试错学习以最大化长期累积奖励G。该过程表示为一个四元组。

F为防御方,欺骗防御建模:
攻击方采用基于强化学习的多智能体智能渗透攻击(人工智能扫描),智能体在给定时间内通过不
断试错学习以最大化长期累积奖励G。该过程表示为一个四元组。

(1)阶段一:
①攻击方采用基于强化学习的多智能体智能渗透攻击(人工智能扫描),智能体在给定时间内通过不
断试错学习以最大化长期累积奖励G。
(2)阶段二
(3)阶段三

欺骗防御策略

四级标题
五级标题
六级标题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值