题意
SDUQD 旁边的滨海公园有 x x x 条长凳。第 i i i 个长凳上坐着 a i a_i ai 个人。这时候又有 y y y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y y y 个人坐下后,记 k k k = 所有椅子上的人数的最大值,那么 k k k 可能的最大值 m x mx mx 和最小值 m n mn mn 分别是多少。
Input
第一行包含一个整数
x
(
1
<
=
x
<
=
100
)
x (1 <= x <= 100)
x(1<=x<=100) 表示公园中长椅的数目
第二行包含一个整数
y
(
1
<
=
y
<
=
1000
)
y (1 <= y <= 1000)
y(1<=y<=1000) 表示有
y
y
y 个人来到公园
接下来
x
x
x 个整数
a
i
(
1
<
=
a
i
<
=
100
)
a_i (1<=a_i<=100)
ai(1<=ai<=100),表示初始时公园长椅上坐着的人数
Output
输出 m n mn mn 和 m x mx mx
Sample Input
3
7
1
6
1
Sample Output
6 13
样例解释
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的 k 分别为 8,7,…,8
其中,状态{1,13,1}的 k = 13,为 mx
状态{4,6,5}和状态{5,6,4}的k = 6,为 mn
思路
签到题,求最大值的最大值和最大值的最小值,直接二分答案即可
代码实现
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
int x,y,a[110];
int main()
{
scanf("%d",&x);
scanf("%d",&y);
int mx=0;
for(int i=0;i<x;i++){
scanf("%d",&a[i]);
mx=max(mx,a[i]);
}
int l=mx,r=mx+y;
while(l<=r){
int mid=(l+r)>>1,sum=0;
for(int i=0;i<x;i++)
sum+=mid-a[i];
if(sum>=y) r=mid-1;
else l=mid+1;
}
printf("%d %d\n",r+1,mx+y);
return 0;
}