前言
在临床实验中,角膜中央厚度定位及测量的关键和前提是进行眼前节组织 OCT 图像上下角膜的边缘检测。如果使用传统的边缘检测算子来处理眼前节组织 OCT 图像,则容易产生误检测、假边缘等缺点,使用数学形态学进行边缘检测可以克服传统算法的缺点,有较好的效果。本次实验采用多尺度图像形态学处理的方法来提取眼前节组织 OCT 图像的边缘,核心算法采用数学形态学进行处理。
一、理论基础
数学形态学图像处理以集合论为理论基础,对图像进行形态学变换实质上是一种针对集合的处理过程。形态学运算用于表示物体或形状的集合与形态学算子结构的相互作用,并且形态学算子结构的形状决定了形态学运算所匹配目标的形状信息。因此,对图像进行数学形态学图像处理就是通过在图像中移动一个结构元素,并将该结构元素与对应的图像块矩阵进行交、并等集合运算,得到处理结果矩阵。数学形态学图像处理的基本形态运算是腐蚀和膨胀,然后可以延伸到开启和闭合。

假设数字图像矩阵为 Uint8 类型(范围为 0~255),则根据形态学运算的特点,膨胀运算将超出边界的部分指定为图像
本文介绍了如何使用MATLAB进行多尺度形态学处理来提取眼前节组织OCT图像的边缘,通过选择不同尺度的结构元素进行边缘检测并融合,提高了边缘检测的精度,减少了噪声影响。
订阅专栏 解锁全文
91

被折叠的 条评论
为什么被折叠?



