YOLOv8改进,YOLOv8添加DCNv3可变性卷积,无需编译

65 篇文章 33 订阅 ¥199.90 ¥299.90


前言

DCNv3在DCNv2版本上进行了改进,上一期我们在YOLOv8中添加了DCNv2,这一期我们将添加DCNv3,DCNv3代码详解可以参考链接: 代码详解——可变形卷积(DCNv3)

DCNv3介绍

基于卷积神经网络 (CNNs) 的大规模模型仍处于早期阶段。本文提出了一种新的基于CNN的大规模基础模型,称为InternImage。与近期聚焦于大密度卷积核的大型CNN不同,InternImage以可变形卷积作为核心算子,因此模型不仅具备下游任务(如检测和分割)所需的大有效感受野,还具备适应输入和任务信息的自适应空间聚合能力。
在这里插入图片描述

图(a) 显示了多头自注意力 (MHSA) 的全局聚合,其计算和内存成本在需要高分辨率输入的下游任务中非常昂贵。图(b) 将MHSA的范围限制在一个局部窗口内,以减少成本。图© 是具有非常大卷积核的深度卷积,用于建模长距离依赖关系。图

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值