opencv 使用深度学习进行人脸年龄的检测

本文介绍如何结合OpenCV和深度学习模型进行人脸年龄检测。首先进行人脸检测,然后将检测到的人脸数据输入年龄检测模型。通过初始化年龄段、加载人脸识别和年龄检测模型,对图像进行预处理,计算blob值并进行预测。最终,根据预测结果展示人脸年龄及其置信度。文章还提及了使用更多数据训练更精确模型的可能性,并推荐了相关小程序进行更多属性的检测。
摘要由CSDN通过智能技术生成

前期的文章我们分享了人脸的识别以及如何进行人脸数据的训练,本期文章我们结合人脸识别的

模型进行人脸年龄的检测

人脸年龄的检测步骤

1、首先需要进行人脸的检测

2、把检测到的人脸数据给年龄检测模型去检测

3、把检测结果呈现到图片上

人脸年龄检测

import numpy as np
import cv2import osAGE_LIST = ["(0-2)", "(4-6)", "(8-12)", "(15-20)", "(25-32)",
	"(38-43)", "(48-53)", "(60-100)"]
prototxtFacePath =  "model/deploy.prototxt"
weightsFacePath = "model/res10_300x300_ssd_iter_140000.caffemodel"
faceNet = cv2.dnn.readNet(prototxtFacePath, weightsFacePath)prototxtAgePath = "model/a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值