Tableau常用函数总结——日期函数

1.date_part:
在这里插入图片描述
2.DATEADD:
1)语法:DATEADD(date_part, interval, date)
2)返回:返回指定日期,该日期的指定 date_part 中添加了指定的数字 interval
3)举例:
DATEADD(‘month’, 3, #2004-04-15#) = 2004-07-15 12:00:00 AM
该表达式会向日期 #2004-04-15# 添加三个月。

3.DATEDIFF:
1)语法:DATEDIFF(date_part, date1, date2, [start_of_week])
2)返回:返回 date1 与 date2 之差(以 date_part 的单位表示)。
start_of_week 参数(可用于指定哪一天是一周的第一天)是可选的。可能的值为“monday”、“tuesday”等。
3)举例:
DATEDIFF(‘week’, #2013-09-22#, #2013-09-24#, ‘monday’)= 1
DATEDIFF(‘week’, #2013-09-22#, #2013-09-24#, ‘sunday’)= 0
第一个表达式返回 1,因为当 start_of_week 为 ‘monday’ 时,9 月 22(星期日)和 9 月 24(星期二)不属于同一周。
第二个表达式返回 0,因为当 start_of_week 为 ‘sunday’ 时,9 月 22(星期日)和 9 月 24(星期二)属于同一周。

4.DATENAME:
1)语法:DATENAME(date_part, date, [start_of_week])
2)返回:以字符串的形式返回 date 的 date_part。start_of_week 参数(可用于指定哪一天是一周的第一天)是可选的。可能的值为“monday”、“tuesday”等
3)举例:
DATENAME(‘year’, #2004-04-15#) = “2004”
DATENAME(‘month’, #2004-04-15#) = “April”

5.DATEPARSE:
1)语法:DATEPARSE(date_format, [date_string])
2)返回:返回 [date_string] 作为日期。 date_format 参数将描述 [字符串] 字段的排列方式。由于可通过各种方式对字符串字段进行排序,因此 date_format 必须完全匹配
3)举例:
DATEPARSE(‘yyyy-MM-dd’, #2004-04-15#) = “April 4, 2004”

6.DATEPART:
1)语法:DATEPART(date_part, date, [start_of_week])
2)返回:以整数的形式返回 date 的 date_part。
start_of_week 参数(可用于指定哪一天是一周的第一天)是可选的。可能的值为“monday”、“tuesday”等
3)举例:
DATEPART(‘year’, #2004-04-15#) = 2004
DATEPART(‘month’, #2004-04-15#) = 4

7.DATETRUNC:
1)语法:DATETRUNC(date_part, date, [start_of_week])
2)返回:按 date_part 指定的准确度截断指定日期。此函数返回新日期。例如,以月份级别截断处于月份中间的日期时,此函数返回当月的第一天。start_of_week 参数(可用于指定哪一天是一周的第一天)是可选的。可能的值为“monday”、“tuesday”等
3)举例:
DATETRUNC(‘quarter’, #2004-08-15#) = 2004-07-01 12:00:00 AM
DATETRUNC(‘month’, #2004-04-15#) = 2004-04-01 12:00:00 AM

8.DAY:
1)语法:DAY(date)
2)返回:以整数的形式返回给定日期的天
3)举例:
DAY(#2004-04-12#) = 12

9.ISDATE:
1)语法:ISDATE(string)
2)返回:如果给定字符串为有效日期,则返回 true
3)举例:
ISDATE(“April 15, 2004”) = true

10.MAKEDATE:
1)语法:MAKEDATE(year, month, day)
2)返回:
返回一个依据指定年份、月份和日期构造的日期值。
可用于 Tableau 数据提取。检查在其他数据源中的可用性
3)举例:
MAKEDATE(2004, 4, 15) = #April 15, 2004#

11.MAKEDATETIME:
1)语法:MAKEDATETIME(date, time)
2)返回:返回合并了 date 和 time 的 datetime。日期可以是 date、datetime 或 string 类型。时间必须是 datetime
3)举例:
MAKEDATETIME(“1899-12-30”, #07:59:00#) = #12/30/1899 7:59:00 AM#
MAKEDATETIME([Date], [Time]) = #1/1/2001 6:00:00 AM#

12.MAKETIME:
1)语法:MAKETIME(hour, minute, second)
2)返回:
返回一个依据指定小时、分钟和秒构造的日期值。
可用于 Tableau 数据提取。检查在其他数据源中的可用性
3)举例:
MAKETIME(14, 52, 40) = #14:52:40#

13.MAX:
1)语法:MAX(expression) or MAX(expr1, expr2)
2)返回:
通常应用于数字,不过也适用于日期。返回 a 和 b 中的较大值(a 和 b 必须为相同类型)。如果任一参数为 Null,则返回 Null
3)举例:
MAX(#2004-01-01# ,#2004-03-01#) = 2004-03-01 12:00:00 AM
MAX([ShipDate1], [ShipDate2])

14.MIN:
1)语法:MIN(expression) or MIN(expr1, expr2)
2)返回:
通常应用于数字,不过也适用于日期。返回 a 和 b 中的较小值(a 和 b 必须为相同类型)。如果任一参数为 Null,则返回 Null
3)举例:
MIN(#2004-01-01# ,#2004-03-01#) = 2004-01-01 12:00:00 AM
MIN([ShipDate1], [ShipDate2])

15.MONTH:
1)语法:MONTH(date)
2)返回:以整数的形式返回给定日期的月份
3)举例:
MONTH(#2004-04-15#) = 4

16.NOW:
1)语法:NOW( )
2)返回:返回当前本地系统日期和时间
3)举例:
NOW( ) = 2004-04-15 1:08:21 PM

17.QUARTER:
1)语法:QUARTER ( )
2)返回:以整数的形式返回给定日期的季度
3)举例:
WEEK (#2004-04-15#) = 16

18.TODAY:
1)语法:TODAY( )
2)返回:返回当前日期
3)举例:
TODAY( ) = 2004-04-15

19.WEEK:
1)语法:WEEK( )
2)返回:以整数的形式返回给定日期的周
3)举例:
WEEK (#2004-04-15#) = 16

20.YEAR:
1)语法:YEAR (date)
2)返回:以整数的形式返回给定日期的年份
3)举例:
YEAR(#2004-04-15#) = 2004

### Tableau 数据可视化入门教程 #### 什么是TableauTableau 是一种强大的数据可视化工具,它允许用户通过拖放操作快速创建交互式的图表和仪表板。它的设计旨在帮助人们轻松地分析、理解和共享数据[^1]。 #### Tableau 的主要功能 - **数据连接**:支持多种数据源,包括Excel文件、CSV文件、SQL数据库以及云服务提供商的数据。 - **实时分析**:提供即时数据分析能力,使用户能够迅速查看并理解他们的数据。 - **高级计算**:内置丰富的函数库用于执行复杂的计算,例如日期运算、字符串处理等。 - **协作分享**:可以将工作簿发布到服务器上与其他同事共享,促进团队合作。 #### 基础概念 为了有效地利用Tableau进行数据可视化,了解以下几个基本术语非常重要: - **维度 (Dimensions)** 和 **度量 (Measures)** :这是两种不同类型字段,在构建视图时起着核心作用。通常来说,“谁”或者“什么”的问题是关于维度;而涉及数量多少则属于度量范畴。 - **标记卡 (Marks Card)** :控制图形中的各个元素样式的地方,比如颜色填充、大小调整等等。 #### 创建第一个可视化项目 以下是使用Tableau制作简单柱状图的过程概述: 1. 打开软件后加载所需数据集; 2. 将感兴趣的变量分别拖放到列架(Columns Shelf)与行架(Rows Shelf),形成初步布局框架; 3. 调整参数设置直至达到预期效果为止——这可能涉及到更改图表类型、应用过滤器等功能模块的操作步骤。 下面是一段简单的 Python 脚本示例,展示如何借助 pandas 库读取 CSV 文件并将结果导出成适合导入至 tableau 中使用的格式: ```python import pandas as pd # 加载数据 data = pd.read_csv('example.csv') # 处理数据... processed_data = data.groupby(['Category']).sum() # 导出为新的 csv 文件供 tableau 使用 processed_data.to_csv('output_for_tableau.csv') ``` 此脚本仅作为演示用途,实际应用场景下还需要考虑更多细节问题,如缺失值填补策略的选择或是异常检测机制的设计等方面的内容。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值