OpenCV图像梯度

OpenCV提供三种类型的梯度滤波器或高通滤波器,即Sobel,Scharr和Laplacian。

1.Sobel算子

主要使用cv2.Sobel()来实现。

dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

参数如下:

  • src:需要处理的图像
  • ddepth:图像的深度,-1表示采用的是与原图像相同的深度。目标图像的深度必须大于等于原图像的深度
  • dx和dy表示的是求导的阶数,0表示这个方向上没有求导,一般为0、1、2
  • dst:输出图像
  • ksize:是Sobel算子的大小,必须为1、3、5、7
  • scale:是缩放导数的比例常数,默认情况下没有伸缩系数
  • delta:是一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中
  • borderType:是判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。

代码示例:

import cv2 as cv
img = cv.imread('C:\\Users\\dell\\Desktop\\prac files\\prac1.jpg')
dst = cv.Sobel(img, -1, 1, 1, None, 5)
cv.imshow("prac", dst)
cv.waitKey(0)
cv.destroyAllWindows()

2.Scharr算子

主要使用cv2.Scharr()函数来实现。

cv2.Scharr(src, ddepth, dx, dy, dst=None, scale=None, delta=None, borderType=None)

参数和Sobel相比没有ksize,其余同上,代码示例:

import cv2 as cv
img = cv.imread('C:\\Users\\dell\\Desktop\\prac files\\prac1.jpg')
dst2 = cv.Scharr(img, -1, 0, 1)
cv.imshow("prac", dst2)
cv.waitKey(0)
cv.destroyAllWindows()

3.Laplacian 算子

主要使用cv2.Laplacian()来实现。

dst = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

参数和Sobel相比,ksize为Laplacian 算子的大小,其余同上,代码示例:

import cv2 as cv
img = cv.imread('C:\\Users\\dell\\Desktop\\prac files\\prac1.jpg')
dst3 = cv.Laplacian(img, -1, None, 3)
cv.imshow("prac", dst3)
cv.waitKey(0)
cv.destroyAllWindows()

4.注意事项

如果要检测两个边缘,更好的选择是将输出数据类型保留为更高的形式,例如 cv.CV_16S ,cv.CV_64F 等,取其绝对值,然后转换回 cv.CV_8U 。

代码示例:

sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值