聚类算法优化

聚类算法优化

【其实就是为了选择质心,保证每个点距离不是很近】

k-means算法小结

优点:

​ 1.原理简单(靠近中心点),实现容易

​ 2.聚类效果中上(依赖K的选择)

​ 3.空间复杂度o(N),时间复杂度o(IKN)

N为样本点个数,K为中心点个数,I为迭代次数

缺点:

​ 1.对离群点,噪声敏感 (中心点易偏移)

​ 2.很难发现大小差别很大的簇及进行增量计算

​ 3.结果不一定是全局最优,只能保证局部最优(与K的个数及初值选取有关)

1 Canopy算法配合初始聚类

1.1 Canopy算法配合初始聚类实现流程        【通过绘制同心圆,进行K值选择筛选,需要确定同心圆的半径t1,t2】

【最开始的时候,这里的同心圆点是随机选取的,第二个取的时候需要选取圆之外的点】

1.2 Canopy算法的优缺点

优点:

​ 1.Kmeans对噪声抗干扰较弱,通过Canopy对比,将较小的NumPoint的Cluster直接去掉有利于抗干扰。

​ 2.Canopy选择出来的每个Canopy的centerPoint作为K会更精确。

​ 3.只是针对每个Canopy的内做Kmeans聚类,减少相似计算的数量。

缺点:

​ 1.算法中 T1、T2的确定问题 ,依旧可能落入局部最优解

2 K-means++       【距离平方进行求解,保证下一个质心到当前质心的距离最远】

【上图中的15是一个假设的值】【假设第一次选的质心为2,则下一个应该选择15,让质点距离越远越好】

kmeans++目的,让选择的质心尽可能的分散      

如下图中,如果第一个质心选择在圆心,那么最优可能选择到的下一个点在P(A)这个区域(根据颜色进行划分)

3 二分k-means       【类似于决策树的思想,通过误差平方和设置阈值,然后进行划分】

实现流程:

  • 1.所有点作为一个簇

  • 2.将该簇一分为二

  • 3.选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。

  • 4.以此进行下去,直到簇的数目等于用户给定的数目k为止。

【这儿可以选择小于等于3时,簇的划分停止】

隐含的一个原则

因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点越接近于他们的质心,聚类效果就越好。所以需要对误差平方和最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类效果越不好,越有可能是多个簇被当成了一个簇,所以我们首先需要对这个簇进行划分。

二分K均值算法可以加速K-means算法的执行速度,因为它的相似度计算少了并且不受初始化问题的影响,因为这里不存在随机点的选取,且每一步都保证了误差最小

4 k-medoids(k-中心聚类算法)

K-medoids和K-means是有区别的,不一样的地方在于中心点的选取

  • K-means中,将中心点取为当前cluster中所有数据点的平均值,对异常点很敏感!

  • K-medoids中,将从当前cluster 中选取到其他所有(当前cluster中的)点的距离之和最小的点作为中心点。

算法流程:

   ( 1 )总体n个样本点中任意选取k个点作为medoids

   ( 2 )按照与medoids最近的原则,将剩余的n-k个点分配到当前最佳的medoids代表的类中

   ( 3 )对于第i个类中除对应medoids点外的所有其他点,按顺序计算当其为新的medoids时,代价函数的值,遍历所有可能,选取代价函数最小时对应的点作为新的medoids

   ( 4 )重复2-3的过程,直到所有的medoids点不再发生变化或已达到设定的最大迭代次数

   ( 5 )产出最终确定的k个类

k-medoids对噪声鲁棒性好。

例:当一个cluster样本点只有少数几个,如(1,1)(1,2)(2,1)(1000,1000)。其中(1000,1000)是噪声。如果按照k-means质心大致会处在(1,1)(1000,1000)中间,这显然不是我们想要的。这时k-medoids就可以避免这种情况,他会在(1,1)(1,2)(2,1)(1000,1000)中选出一个样本点使cluster的绝对误差最小,计算可知一定会在前三个点中选取。

k-medoids只能对小样本起作用,样本大,速度就太慢了,当样本多的时候,少数几个噪音对k-means的质心影响也没有想象中的那么重,所以k-means的应用明显比k-medoids多。

5 Kernel k-means

kernel k-means实际上,就是将每个样本进行一个投射到高维空间的处理,然后再将处理后的数据使用普通的k-means算法思想进行聚类。

【白话文解释:把所有点都放在桌子上,在桌子中心的一敲,所有点都会震动起来,离中心点的位置会震动的高一些,然后 用一把刀根据震动的高度不同就可以分开了】

6 ISODATA

类别数目随着聚类过程而变化;

对类别数会进行合并,分裂,

  • “合并”:(当聚类结果某一类中样本数太少,或两个类间的距离太近时)
  • “分裂”(当聚类结果中某一类的类内方差太大,将该类进行分裂)

7 Mini Batch K-Means

适合大数据的聚类算法

大数据量是什么量级?通常当样本量大于1万做聚类时,就需要考虑选用Mini Batch K-Means算法。

Mini Batch KMeans使用了Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch计算过程中不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。由于计算样本量少,所以会相应的减少运行时间,但另一方面抽样也必然会带来准确度的下降。

该算法的迭代步骤有两步:

(1)从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心

(2)更新质心

​ 与Kmeans相比,数据的更新在每一个小的样本集上。对于每一个小批量,通过计算平均值得到更新质心,并把小批量里的数据分配给该质心,随着迭代次数的增加,这些质心的变化是逐渐减小的,直到质心稳定或者达到指定的迭代次数,停止计算。

8 总结

优化方法思路
Canopy+kmeansCanopy粗聚类配合kmeans
kmeans++距离越远越容易成为新的质心
二分k-means拆除SSE最大的簇
k-medoids和kmeans选取中心点的方式不同     【通过从当前点选择中心点(质点)进行判断】
kernel kmeans映射到高维空间
ISODATA动态聚类    【更改K值大小】
Mini-batch K-Means大数据集分批聚类
  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值