词性标注是指为输入文本中的单词标注对应词性的过程。词性标注的主要作用在于预测接下来一个词的词性,并为句法分析、信息抽取等工作打下基础。通常地,实现词性标注的算法有HMM(隐马尔科夫)和深度学习(RNN、LSTM等)。然而,在中文中,由于汉语是一种缺乏词形态变化的语言,没有直接判断的依据,且常用词兼类现象严重,研究者主观原因造成的不同都给中文词性标注带来了很大的难点。
本文将介绍如何通过Python程序实现词性标注,并运用spaCy训练中文词性标注模型:
1、对训练集文本内容进行词性标注
首先,对于给定的训练集数据:
利用spaCy模块进行nlp处理,初始化一个标签列表和文本字符串,将文本分词后用“/”号隔开,并储存文本的词性标签到标签列表中,代码如下:
def train_data(train_path):
nlp = spacy.load('zh_core_web_sm')
train_list = []
for line in open(train_path,"r",encoding="utf8"):
train_list.append(line)
#print(train_list)
result = []
train_dict = {
}
for i in train_list:
doc = nlp(i)
label = []
text = ""
#print(doc)
for j in doc:
text += j.text+"/"
#result.append(str(j.text))
#print(text)
label.append