卷积层(Convolutional Layer):
卷积层是CNN中的核心组件,它利用卷积操作对输入图像进行特征提取。卷积层包括一组可学习的卷积核(或滤波器),它们在输入图像上滑动并执行卷积操作,从而生成特征图。卷积层的作用是提取图像的局部特征,保留空间结构信息,并对图像进行平移不变性的学习。
池化层(Pooling Layer):
池化层用于减小特征图的空间尺寸,同时保留重要的特征信息。常见的池化操作包括最大池化和平均池化,它们分别通过提取区域中的最大值或平均值来减少特征图的尺寸。池化层的作用是减少计算量,同时使特征对于平移具有一定的不变性。
全连接层(Fully Connected Layer):
全连接层是一个常规的神经网络层,它将卷积层和池化层中提取的特征映射转换为最终的分类或回归结果。全连接层的每个神经元都与前一层中的所有神经元相连接,通过学习权重来实现对特征的组合和转换。在图像分类任务中,全连接层通常用于最终的分类决策。