编程规范Summary

编程范式

  • 结构化编程
    C语言(if/else结构)
  • 面向对象编程(OOP)
    JAVA语言(将程序组织为类与类之间的交互)
  • 函数式编程(FP)
    没有典型的语言,AI中常用python的FP特性来进行数据处理,但python同时也能支持OOP。python用于数据处理的方便之处在于语法简单,数据处理的第三方库丰富。

设计原则

目前最被广泛接受的是SOLID原则:

  • Single Responsibility Principle(单一职责原则)
    类或函数的功能要尽量单一,从而保证各模块尽量正交,引起每个模块的变动的来源更加地少;
  • Open-Closed Principle(开闭原则)
    对扩展开放,对修改关闭
  • Liskov Substitution Principle(里氏替换原则)
    做继承设计时,要从父类角度思考,设计行为一致的子类,子类和父类是is-A的关系
  • Integerface Segregation Principle(接口隔离原则)
    类似SRP,ISP表达了接口设计时应遵循职责尽量单一的原则,只不过SRP是从代码维护者的角度,而ISP是从使用者的角度
  • Dependency Reversion(依赖倒置原则)
    实现应该依赖于抽象

常用的设计模式

  1. 创建型:简单工厂、工厂方法、抽象工厂:
    简单工厂是通过一个简单工厂类根据不同的输入,实现不同的处理方式(一般通过if-else实现);工厂方法是针对不同的实现方式抽象出一个工厂方法接口,然后不同的处理方式去实现这个接口得到不同的工厂,这种方式更符合开闭原则;抽象工厂是当不同的工厂类需要实现不止一个工厂方法接口时,在抽象的工厂类中新增更多的工厂方法接口,然后不同的工厂都去实现这些接口,抽象工厂用的比较少,一般这种情况就会用抽象类来代替了,因为可能还有公共的属性。
  2. 结构型:代理模式、装饰器模式、适配器:
    代理模式,如Spring AOP就是典型的动态代理设计模式,核心目的是在屏蔽用户感知的情况下,控制对象的访问,通常应用在日志、埋点、监控、鉴权、事务等;
    装饰器模式,本质是要解决类继承深度过深,然后通过组合的方式,实现多重装饰进行嵌套,从而避免继承问题;
    适配器模式,本质是将不同的实现统一成相同的接口,比如Slf4j日志框架,通过统一日志接口定义,然后为不同的日志框架实现如log4j和logback构造对应的适配器,适配器来实现统一的接口,从而形成了接口和实现的解耦。
  3. 行为型:观察者模式、模版模式、职责链模式:
    观察者模式,例如google的eventbus就是基于该模式进行的设计,所有观察者可以注册到需要监听的event上,event发送时触发调用相应观察者进行处理。总体来说分为异步和同步两种,异步一般就是通过新起线程来实现。
    模版模式,通过抽象出子类公共的功能,增加代码复用,同时对流程中需要有不同实现的环节预留扩展点。典型的应用就是callBack。
    职责链模式,应用于需要将一个业务流程各环节进行拆分,每个环节分配给一个对应的职责类来处理,如流水线上不同工位可以看作不同的职责类,整个流水线就应用类职责链模式。

设计扩展性的思考

基于开闭原则,我们平时在技术设计时要预留足够的扩展性,同时也注意不要过度设计。
扩展性设计主要体现在下面几个方面:

  • 数据库扩展性
    设计数据库时,要确认好产品的功能全景和发展方向,针对有较大可能的功能预留扩展字段;预估业务体量,考虑是否应用分库分表;
  • 代码扩展性
    厘清业务迭代方向,形成产品全景,通过功能抽象,应用设计模式保证代码满足SOLID特性。

应用分层规范

Starter层
Biz层
Dao层
Common层
Api层
Api-impl层
Integration层
### Flink 大数据处理优化技巧与最佳实践 #### 调优原则与方法概述 对于Flink SQL作业中的大状态导致的反压问题,调优的核心在于减少状态大小以及提高状态访问效率。通过合理配置参数和调整逻辑设计可以有效缓解此类瓶颈[^1]。 #### 参数设置建议 针对不同版本下的具体特性差异,在实施任何性能改进措施前应当充分理解当前使用的Flink版本特点及其局限性;同时也要考虑特定应用场景的需求特征来定制化解决方案。这包括但不限于并行度设定、内存分配策略等方面的选择[^2]。 #### 数据流模式优化 采用广播变量机制可作为一种有效的手段用于降低主数据流转过程中所需维护的状态量级。当存在一对多关系的数据集间需频繁交互时,将较小规模的一方作为广播状态保存下来供另一方查询匹配使用不失为明智之举。此方式特别适用于维表Join操作中,其中一方变动相对较少但又必须保持最新记录的情况[^3]。 ```sql -- 创建临时视图以支持后续JOIN操作 CREATE TEMPORARY VIEW dim_table AS SELECT * FROM kafka_source; -- 定义Temporal Table Function以便获取指定时间点上的历史快照 CREATE FUNCTION hist_dim_table AS 'com.example.HistoricalDimTableFunction'; -- 执行带有时态条件约束的JOIN语句 SELECT o.order_id, d.product_name FROM orders o LEFT JOIN LATERAL TABLE(hist_dim_table(o.event_time)) AS d ON o.product_id = d.id; ``` 上述代码片段展示了如何利用Flink SQL实现基于时间戳的历史维度表连接功能,从而确保每次都能准确捕捉到事件发生瞬间对应的最恰当的产品名称信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值