YOLOv8+SwanHub+作物检测:从可视化训练到Demo演示

1. 项目介绍

        本项目旨在利用先进的YOLOv8深度学习模型对麦穗进行高效、准确的检测。我们采用了GlobalWheat数据集,该数据集包含丰富的麦穗图像,为模型的训练提供了有力的数据支持。通过该实验,实现高准确率的麦穗识别,为农业生产提供智能化的监测手段。这一项目将有助于农民更准确地评估作物生长状况,优化种植策略,提高农业生产的效率和质量。

        YOLOv8是目标检测领域的一款先进模型,它继承了YOLO系列的核心思想,即一次性对整个图像进行预测以实现快速目标检测。该模型在多个尺度上提供了不同大小的模型(N/S/M/L/X),以满足不同场景的需求。本实验采用YOLOv8n进行实验。

        Swanhub是由极客工作室开发的一个开源模型协作分享社区。它为AI开发者提供了AI模型托管、训练记录、模型结果展示、API快速部署等功能。

        SwanHub:SwanHub - 创新的AI开源社区

        SwanLab:SwanLab - 在线AI实验平台

项目团队:新疆大学大数据挖掘和智能计算实验室

2. 准备

2.1 安装python库

安装以下4个库

torch>=2.0.0 torchvision>=0.15.1 swanlab>=0.2.4 gradio>=3.50.2

安装命令:

pip install torch>=2.0.0 torchvision>=0.15.1 swanlab>=0.2.4 gradio>=3.50.2

2.2 下载数据集

案例(全球麦穗数据集GlobalWheat):链接:https://pan.baidu.com/s/1HZB4na0q3u94CJyWVnRyZw 

提取码:2g3n

GlobalWheat
--images
----train
------1.jpg
------2.jpg
----test
------1.jpg
------2.jpg
----vaildation
------1.jpg
------2.jpg
--labels
----train
------1.txt
------2.txt
----test
------1.txt
------2.txt
----vaildation
------1.txt
------2.txt

它们各自的作用与意义:

  • GlobalWheat文件夹:该文件夹用于存储图片文件夹images与标签文件夹labels

  • images文件夹:该文件夹用于保存训练、测试、验证图片文件夹。

  • labels文件夹:该文件夹用于保存训练、测试、验证标签文件夹。

2.3 下载YOLOv8模型

模型链接:https://github.com/ultralytics/ultralytics

解压后得到ultralytics-main文件夹,并安装ultralytics库,命令如下:

pip install ultralytics

2.4 创建文件目录

在ultralytics-main文件夹中创建app.py,main.py,将GlobalWheat文件夹导入,并在GlobalWheat文件夹中创建wheat.yaml

它们各自的作用分别是:

  • GlobalWheat:这个文件夹用于存储数据集

  • main.py:用于训练YOLOv8模型的脚本

  • app.py:运行Gradio Demo的脚本

  • wheat.yaml:保存数据集中训练、测试、验证集的绝对路径,以及类别。

3. 训练部分

3.1 模型训练

首先将yolov8.yaml文件导入模型,再进行模型训练。其中,data代表数据集路径,epoch代表训练次数,imgsz表示图片输入尺寸。

具体代码:

from ultralytics import YOLO

if __name__ == '__main__':
    # 模型训练
    model = YOLO("ultralytics/cfg/models/v8/yolov8.yaml")
    model.load()
    model.train(data="./GlobalWheat2020/wheat.yaml", epochs=50, imgsz=640)

3.2 初始化SwanLab 

SwanLab是一个类似Tensorboard的开源训练图表可视化库,有着更轻量的体积与更友好的API,除了能记录指标,还能自动记录训练的logging、硬件环境、Python环境、训练时间等信息。

设置初始化配置参数:SwanLab库使用s

基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Flask+Mysql+Yolov5(Pytorch)+Vue的智慧农场系统-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值