问题介绍
通过爬虫获得了某话题下从4月2日到8月11日发布的微博,其数据格式如下:
发布时间 | 博主ID | 博文内容 |
---|---|---|
4月2日 23:57 | ID1 | xxx |
4月2日 23:54 | ID2 | xxx |
4月3日 23:51 | ID3 | xxx |
… | … | … |
8月11日 10:01 | IDn | xxx |
目的是,统计每天博文的数量
解决方法
- 选中发布时间列------点击查找和选择------输入“月”------点击“查找全部”,其结果如下图所示
然后选中上图中查找结果的其中一条–ctrl+A,选中全部------点击上图中的“替换”,切换到替换界面输入“-”或“/”(这么做是因为上述表格中的日期不符合excel中的日期格式,不能进行格式转换)------同样的操作步骤,将“日”替换为空,即替换栏什么也不输入------选中“发布日期”列,右键,设置单元格格式,在自定义中选择想要的格式,也可以按照需求自己设定-----确定------保存。
至此,同一天发布的博文的日期单元格文本内容完全一致,即:
发布时间 | 博主ID | 博文内容 |
---|---|---|
4月2日 | ID1 | xxx |
4月2日 | ID2 | xxx |
4月3日 | ID3 | xxx |
… | … | … |
8月11日 | IDn | xxx |
- 在python中进行下面的处理
data = pd.read_csv('data_path/name') # 导入数据
date = data['发布时间']# 提取发布时间列
table = date.value_counts()# 统计相同日期的数量
table.to_csv('博文统计.csv')# 导出数据