矩阵理论——矩阵的本质

本文探讨了线性变换和线性映射的概念,阐述了它们与矩阵的关系,解释了如何通过基确定唯一的矩阵表示。线性映射与矩阵的一一对应揭示了矩阵的本质是表示线性变换。此外,文章还涉及了同构映射、线性变换对坐标的影响以及相似矩阵的含义。
摘要由CSDN通过智能技术生成

线性变换
(1) T : V → V T:V\rightarrow V T:VV
(2)可加性
(3)齐次性
线性映射
(1) T : V → W T:V\rightarrow W T:VW
(2)可加性
(3)齐次性

线性映射与矩阵的关系

线性映射是个抽象的概念,矩阵是具体的,可以通过一个矩阵来表示一个线性映射。
但为何可以做到用矩阵来表示一个线性映射呢?
因为线性映射关系可由两个线性空间 V , W V,W V,W的基确定唯一的矩阵 A A A。同理,如果是线性变换,可由线性空间 V V V的基确定唯一矩阵 A A A

这个矩阵 A A A是怎么确定出来的呢,下面对这个过程进行分析。
设 线 性 映 射 为 T : V → W , ( ξ 1 , . . . , ξ n ) 是 V 的 基 , ( ϵ 1 , . . . , ϵ m ) 是 W 的 基 设线性映射为T:V\rightarrow W,(\xi_1,...,\xi_n)是V的基,(\epsilon_1,...,\epsilon_m)是W的基 线TVW,(ξ1,...,ξn)V,(ϵ1,...,ϵm)W
T ( ξ i ) ∈ W , 因 此 T ( ξ i ) ∈ s p a n ( ϵ 1 , . . . , ϵ m ) T(\xi_i)\in W,因此T(\xi_i) \in span(\epsilon_1,...,\epsilon_m) T(ξi)WT(ξi)span(ϵ1,...,ϵm)
把 V 上 的 所 有 基 映 射 到 W 可 得 把V上的所有基映射到W可得 VW
[ T ( ξ 1 ) , T ( ξ 2 ) , . . . , T ( ξ n ) ] = [ ( ϵ 1 , . . . , ϵ m ) ( a 11 . . . a m 1 ) , ( ϵ 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值