线性变换
(1) T : V → V T:V\rightarrow V T:V→V
(2)可加性
(3)齐次性
线性映射
(1) T : V → W T:V\rightarrow W T:V→W
(2)可加性
(3)齐次性
线性映射与矩阵的关系
线性映射是个抽象的概念,矩阵是具体的,可以通过一个矩阵来表示一个线性映射。
但为何可以做到用矩阵来表示一个线性映射呢?
因为线性映射关系可由两个线性空间 V , W V,W V,W的基确定唯一的矩阵 A A A。同理,如果是线性变换,可由线性空间 V V V的基确定唯一矩阵 A A A。
这个矩阵 A A A是怎么确定出来的呢,下面对这个过程进行分析。
设 线 性 映 射 为 T : V → W , ( ξ 1 , . . . , ξ n ) 是 V 的 基 , ( ϵ 1 , . . . , ϵ m ) 是 W 的 基 设线性映射为T:V\rightarrow W,(\xi_1,...,\xi_n)是V的基,(\epsilon_1,...,\epsilon_m)是W的基 设线性映射为T:V→W,(ξ1,...,ξn)是V的基,(ϵ1,...,ϵm)是W的基
T ( ξ i ) ∈ W , 因 此 T ( ξ i ) ∈ s p a n ( ϵ 1 , . . . , ϵ m ) T(\xi_i)\in W,因此T(\xi_i) \in span(\epsilon_1,...,\epsilon_m) T(ξi)∈W,因此T(ξi)∈span(ϵ1,...,ϵm)
把 V 上 的 所 有 基 映 射 到 W 可 得 把V上的所有基映射到W可得 把V上的所有基映射到W可得
[ T ( ξ 1 ) , T ( ξ 2 ) , . . . , T ( ξ n ) ] = [ ( ϵ 1 , . . . , ϵ m ) ( a 11 . . . a m 1 ) , ( ϵ 1