排序算法和时间复杂度的简单理解

什么是排序算法?

排序算法也称排序,排序是将一组数据,依指定顺序进行的过程。

排序的分类:

1 内部排序:
将需要处理的所有数据加载到内存中进行排序。

2 外部排序
当数据量过大时,无法全部加载到内存中,则需要借助外部存储进行排序。

常见的八大排序算法:
插入排序(1.直接插入排序 2.希尔排序)
选择排序 (3.简单选择排序 4.堆排序)
交换排序(5.冒泡排序 6.快速排序)
7.归并排序
8.基数排序

——————————————————————————————————————————

什么是时间复杂度?

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。而花费的时间越多,时间复杂度也就越高。

常见的时间复杂度:

1.常数阶(最快的算法)
O(1)

例子:
无论代码运行了多少行,只要没有循环等复杂结构,那这个代码的时间复杂度就为 O(1)

int i=1;
int k=2;
++i;
k++;
int m=i+k;

2.对数阶
O(log2n)

例子:
在while循环中,每当 i * 2 后, i 距离 n 就越来越近,假设循环 x 次后,i 大于 n 了,这个循环也就结束了,也就是说,2 ^ x = n,那么 x = log2n,所以时间复杂度为O(log2n)

int i=1;
while(i<n){
	i=i*2;
}

3.线性阶
O(n)

例子:
这段代码在for循环中执行n遍,它的时间复杂度是随着n的变化而变化的,所以时间复杂度为O(n)

for(int i=0;i<=n;i++){
	j=i;
	j++
}

4.线性对数阶
O(nlog2n)

例子:
线性对数阶,顾名思义就是将时间复杂度为对数阶的代码执行线性阶次

for(int m=0;m<n;m++){
	 i=1;
	while(i<n){
		i=i*2;
	}
}

5.平方阶
O(n^2)

例子:
嵌套两次循环的代码时间复杂度就是O(n^2)

for(int x=1;i<=n;x++){
	for(int i=1;i<=n;i++){
		j=i;
		j++
	}
}

6.立方阶
O(n^3)

例子:
参考平方阶,O(n^3)相当于三次循环嵌套。

7.k次方阶
O(n^k)

例子:
参考平方阶,O(n^k)相当于k次循环嵌套。

8.指数阶(效率最低,尽可能避免使用)
O(2^n)

平均时间复杂度和最坏时间复杂度

在这里插入图片描述

常见排序算法的时间复杂度:

在这里插入图片描述
在这里插入图片描述
下面是我总结的各种排序算法的文章链接,有兴趣可以看看~
冒泡排序
选择排序
直接插入排序
希尔排序
快速排序
归并排序
桶排序、计数排序、基数排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值