数据结构——马踏棋盘题解(贪心算法)
马踏棋盘问题是一个很经典的问题
一般的解决方法就是dfs,但是由于每次踏的方向不同,和初始值的不同,可能会增加这个问题的复杂的,所以在这里我们采用一些贪心算法,加权值进行优化
使用循环建立棋盘与权值棋盘(权值为该位置可走的位置数量)
将当前步数写入棋盘数组中
开始探测下一步该走的位置, 分别测试八个方向
对可走位置进行查询权值,将权值最少的作为下一步的位置(每次都将步数最少的可走位置作为下一步的位置即贪心的体现)[走最小的是因为棋盘的每个位置理论上都要便利一次,而走先走权值小的在走大的可以在一定程度上减小复杂的]
循环2~4。
代码实现 (基于C语言)首先给出基本的dfs代码
#include<stdio.h>
int cnt=0;
int map[12][12] = {0};
bool flag=false;
int vis[12][12] = {0};
int move[8][2] = { {2,1}, {1,2},{-1,2},{-2,1},{-2,-1},{-1,-2},{1, -2}, {2,-1}};
void dfs(int m, int n)
{
//i//f(flag)
//return ;
cnt++;
map[m][n]=cnt;
int i,j,k;
if(cnt==64)
{
//flag=true;
for(i=1;i<=8;i++)
{
for(j=1;j<=8;j++)
{
printf("%d ",map[i][j]);
}
printf("\n");
}
return ;
}
for(i = 0; i < 8; i++)
{
int xx = m + move[i][0];
int yy = n + move[i][1];
if(map[xx][yy]||xx<1||xx>8||yy<1||yy>8)
{
continue;
}
dfs(xx,yy);
map[xx][yy]=0;
cnt--;
}
}
int main(void)
{
int m,n,i,j;
scanf("%d %d", &m, &n);
for(i = 1;i<=m;i+&#