马踏棋盘问题的优化

本文介绍了马踏棋盘问题的经典解法,并探讨了如何通过贪心算法进行优化。通过建立权值棋盘并选择步数最少的可走位置来减少复杂性,以C语言实现代码展示了这一优化过程。
摘要由CSDN通过智能技术生成

数据结构——马踏棋盘题解(贪心算法)
马踏棋盘问题是一个很经典的问题
一般的解决方法就是dfs,但是由于每次踏的方向不同,和初始值的不同,可能会增加这个问题的复杂的,所以在这里我们采用一些贪心算法,加权值进行优化
使用循环建立棋盘与权值棋盘(权值为该位置可走的位置数量)
将当前步数写入棋盘数组中
开始探测下一步该走的位置, 分别测试八个方向
对可走位置进行查询权值,将权值最少的作为下一步的位置(每次都将步数最少的可走位置作为下一步的位置即贪心的体现)[走最小的是因为棋盘的每个位置理论上都要便利一次,而走先走权值小的在走大的可以在一定程度上减小复杂的]
循环2~4。

代码实现 (基于C语言)首先给出基本的dfs代码

#include<stdio.h>
int cnt=0;
int map[12][12] = {0};
bool flag=false;
int vis[12][12] = {0};
int move[8][2] = { {2,1}, {1,2},{-1,2},{-2,1},{-2,-1},{-1,-2},{1, -2}, {2,-1}};
void dfs(int m, int n) 
{
	//i//f(flag)
	//return ;
	cnt++;
	map[m][n]=cnt;
	int i,j,k;
	if(cnt==64)
	{
		//flag=true;
		for(i=1;i<=8;i++)
		{
			for(j=1;j<=8;j++)
			{
				printf("%d    ",map[i][j]);
			}
			printf("\n");
		}
		return ;
	}
		for(i = 0; i < 8; i++)
		{
			int xx = m + move[i][0];
			int yy = n + move[i][1];
			if(map[xx][yy]||xx<1||xx>8||yy<1||yy>8)
			{
				continue;
			}
			dfs(xx,yy);
			map[xx][yy]=0;
			cnt--;
		}
}
int main(void) 
{
	int m,n,i,j;
	scanf("%d %d", &m, &n);
	for(i = 1;i<=m;i+&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值