Matplotlib(7)——绘制图像(补充)

本文详细介绍了Matplotlib库中四种不同的图表绘制方法:包括水平条形图barh、面积图stackplot、雷达图polar以及箱体图boxplot。通过具体的参数解释和实例演示,展示了如何使用这些方法创建各种复杂图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

水平条形图 barh

  • 方法:
    barh(y, width, height=0.8, left=None, *, align=‘center’, **kwargs)

  • 参数:

    • y:表示柱子所处的y坐标
    • width:柱子的宽度,即x轴坐标
    • height:柱子的高度,默认0.8
    • align:表示柱子的对齐方式。可选{‘center’, ‘edge’},默认’center’。
    • color:柱子的颜色
    • edgecolor:表示柱子边框的颜色
  • 实例:

x = np.arange(6) 
y = np.arange(6)
z = np.arange(1,7)

plt.barh(x,y*2)
plt.ylim(0)

在这里插入图片描述

面积图 stackplot

  • 方法:
    stackplot(x, *args, labels=(), colors=None, baseline=‘zero’, data=None, **kwargs)

  • 参数:

    • x:x轴坐标
    • y:y轴坐标,可以是:stackplot(x, y1, y2, y3, y4)
    • baseline:基线计算方法。可选:{‘zero’, ‘sym’, ‘wiggle’, ‘weighted_wiggle’}
  • 实例:

x = ['第一季度','第二季度','第三季度','第四季度']
y1 = [120,150,168,170]
y2 = [90,142,190,136]

plt.stackplot(x,y1,y2,baseline='zero',labels=['北京','上海'])
plt.xlabel('季度')
plt.ylabel('销量')
plt.title('北京-上海季度销量')
plt.legend(loc='upper left')

在这里插入图片描述

雷达图 polar

  • 方法:

    stackploplt.polar(theta, r, color, marker, linewidth)

  • 参数:

    • theta:在极坐标中的角度
    • r:半径长度
    • marker:标记
    • linewidth:连接线的宽度
  • 实例:

theta = np.linspace(0,2*np.pi,num=5,endpoint=False)
data = [5,1,4,4,3]

theta = np.concatenate((theta,[theta[0]]))
data = np.concatenate((data,[data[0]]))
plt.polar(theta,data)
plt.xticks(theta,['服务','时长','业绩','年限','成绩'])

在这里插入图片描述

箱体图 boxplot

  • 方法:
    boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)
  • 参数:
    • x:待绘制数据
    • vert:箱体方向,True:纵向,False:横向
    • widths:箱体宽度
    • labels:标签
  • 实例:
y1 = 10+2.5*np.random.randn(500)
y2 = 8+1.5*np.random.randn(500)

plt.boxplot([y1,y2],vert=True,widths=0.2,labels=['y1','y2'])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值