《代数学基础与有限域》/第一章/ 1.1群

《代数学基础与有限域》

1.1 群

群是一种代数结构,它由一个集合以及一个二元运算组成,这个二元运算通常被称为群运算。这个二元运算必须满足以下四个条件,才能使得这个代数结构成为一个群:
封闭性:对于群中的任意两个元素,它们的群运算结果也必须属于这个群。
结合律:群运算必须满足结合律,即对于群中的任意三个元素 a a a b b b c c c,有 ( a • b ) • c = a • ( b • c ) (a•b)•c=a•(b•c) (ab)c=a(bc)
单位元素:群中必须存在一个元素 e e e,称为单位元素,满足对于任意群中的元素 a a a,有 a • e = e • a = a a•e=e•a=a ae=ea=a
逆元素:对于群中的任意元素a,必须存在一个元素 a ′ a' a,称为 a a a的逆元素,使得 a • a ′ = a ′ • a = e a•a'=a'•a=e aa=aa=e。其中, e e e表示群的单位元素, a ′ a' a表示元素 a a a的逆元素。

对称群:由一组有限的对象的全体置换构成的集合,群运算为置换的复合,单位元素为恒等置换,逆元素为逆置换。该群满足封闭性、结合律、单位元素和逆元素的条件。
矩阵群:由所有n×n可逆实矩阵构成的集合,群运算为矩阵的乘法,单位元素为单位矩阵,逆元素为矩阵的逆。该群满足封闭性、结合律、单位元素和逆元素的条件。

群的阶指的是一个群中元素的个数,记作 ∣ G ∣ |G| G。一个群中的元素可以是数字、函数、矩阵或其他类型的对象,群的阶等于群中元素的个数。

阶的应用

  • 对于一个有限群,如果知道了它的阶,可以使用群的阶定理来推断它的一些性质,比如是否是循环群或交错群等。
  • 当使用一个具有非常大阶的群来加密消息时,一个攻击者要想通过暴力搜索来破解密码,需要计算大量的离散对数,这是一个非常耗时的过程。因此,选择一个合适的阶可以增加密码攻击者破解密码的困难程度,从而提高密码的安全性。

    F 19 F_{19} F19椭圆曲线 y 2 = x 3 + x + 1 y^2=x^3+x+1 y2=x3+x+1上方程:,则上的点一共有23个,因此阶是23,其中的元素分别是 ( 0 , 1 ) , ( 0 , 18 ) ,( 2 , 7 ),( 2 , 12 ),( 5 , 6 ),( 5 , 13 ),( 7 , 3 ),( 7 , 16 ),( 9 , 6 ),( 9 , 13 ),( 10 , 2 ),( 10 , 17 ),( 13 , 8 ),( 13 , 11 ),( 14 , 2 ),( 14 , 17 ),( 15 , 3 ),( 15 , 16 ),( 16 , 3 ),( 16 , 16 ) (0,1),(0,18) ,(2,7),(2,12),(5,6),(5,13),(7,3),(7,16),(9,6),(9,13),(10,2),(10,17),(13,8),(13,11),(14,2),(14,17),(15,3),(15,16),(16,3),(16,16) (0,1)(0,18),(2,7),(2,12),(5,6),(5,13),(7,3),(7,16),(9,6),(9,13),(10,2),(10,17),(13,8),(13,11),(14,2),(14,17),(15,3),(15,16),(16,3),(16,16)
    在这里插入图片描述在现实应用中,加密系统选择的阶尽可能的大,GM/T003国标推荐曲线的阶
    n = F F F F F F F E F F F F F F F F F F F F F F F F F F F F F F F F 7203 D F 6 B 21 C 6052 B 53 B B F 40939 D 54123 n=FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF 7203DF6B 21C6052B 53BBF409 39D54123 n=FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123
    在这里插入图片描述

对于一个群 G G G中的元素 g g g,如果存在正整数 n n n,使得 g g g n n n次方等于单位元 e e e,则称 g g g的阶为 n n n,记作 o r d ( g ) = n ord(g)=n ord(g)=n。否则,称 a a a是无限阶的元素。

有限阶
对于有限群中的元素,它的阶一定是一个有限正整数。换句话说,对于有限群 G G G 中的每个元素 g g g,都存在一个正整数 n n n 使得 g g g n n n次方等于单位元,而且这个 n n n 是有限的。因此,有限群中的元素都是有限阶的元素。
无限阶
而对于无限群中的元素,它的阶可能是无限大。例如,整数集合 ( Z , + ) (Z,+) (Z+)构成一个无限群,对于其中的任意一个非零元素 k k k,其阶为无限大。因为对于任何正整数 n n n n k ≠ 0 nk≠0 nk=0,因此k的阶不可能是有限的。 ( Z , + ) 包含有限阶和无限阶的元素 {\color{Red} (Z,+)包含有限阶和无限阶的元素} (Z+)包含有限阶和无限阶的元素

定理:设 a a a是群 G G G中的一个有限阶元素, o r d ( a ) = m ord(a)=m ord(a)=m,则对任意的整数 k k k, a k a^k ak的阶为 m / ( k , m ) m/(k,m) m/(k,m), 其中 ( k , m ) (k,m) k,m)表示 k k k m m m的最大因子。

定理 a a a, b b b 是群G中的两个元素, a b = b a ab=ba ab=ba。 如果 ( o ( a ) , o ( b ) ) = 1 (o(a),o(b))=1 (o(a),o(b))=1, 那么 o ( a b ) = o ( a ) ⋅ o ( b ) o(ab)=o(a)\cdot o(b) o(ab)=o(a)o(b)

定理 G G G是一有限交换群, n n n G G G中元素的最大阶,则 G G G中任意元素的阶一定能够整除 n n n

等价关系是指具有以下三个性质的关系:
自反性:对于任意的元素 a a a a a a 与自己相等,即 a a a ~ a a a
对称性:对于任意的元素 a a a 和 b,如果 a a a 与 b 相等,则 b 与 a a a 相等,即如果 a ~ b,则 b ~ a。
传递性:对于任意的元素 a、b 和 c,如果 a 与 b 相等,b 与 c 相等,则 a 与 c 相等,即如果 a ~ b 且 b ~ c,则 a ~ c。

同余定义 假设 n n n是一个正整数,对任何整数 a a a b b b,如果 n ∣ ( a − b ) n|(a-b) n(ab),我们则称a和b模n(或 mod n)同余,记做 a ≡ b m o d n a\equiv b mod n abmodn n n n称为这个同余式的模.

定理 如果 H H H是群 G G G的一个子群,则 G G G上的关系
R H : ( a , b ) ∈ R H ⇔ a = b h R_H:(a,b)\in R_H \Leftrightarrow a=bh RH:(ab)RHa=bh(对某个 h ∈ H h\in H hH)是一个等价关系.

上述关系称为模 H H H的左同余,同样有模 H H H的右同余关系,等价类 a H aH aH H b Hb Hb称为左陪集(left coset)或右陪集(right coset).

例子: G = Z 12 G=Z_{12} G=Z12 H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } H=\{[0],[3],[6],[9]\} H={[0][3][6][9]}.则 H H H的陪集有:
[ 0 ] + H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } [0]+H= \{[0],[3],[6],[9]\} [0]+H={[0][3][6][9]}
[ 1 ] + H = { [ 1 ] , [ 4 ] , [ 7 ] , [ 10 ] } [1]+H= \{[1],[4],[7],[10]\} [1]+H={[1][4][7][10]}
[ 2 ] + H = { [ 2 ] , [ 5 ] , [ 8 ] , [ 11 ] } [2]+H= \{[2],[5],[8],[11]\} [2]+H={[2][5][8][11]}.

定理1.17 如果 H H H G G G的一个有限子群,则 H H H每一个(左或右)陪集都和 H H H有同样多的元素.

定义1.17 如果群 G G G的子群 H H H只构造出有限多个模 H H H的陪集,则这个陪集的个数称为 H H H G G G中的指数.

定理1.18 (Lagrange):一个有限群 G G G的阶正好等于任何一个子群 H H H的阶乘乘以 H H H G G G中的指数。特别的, H H H的阶整除群 G G G的阶,任一元素的阶整除 G G G的阶。

拉格朗日定理是群论中最基本的定理之一,它告诉我们一个有限群的阶和它所有子群的阶之间的关系,同时也给出了子群阶和群阶的整除关系。

例1.1.8 (欧拉(Euler)定理) 设 n n n是一正整数,考察由模 n n n的等价类构成的集合 G = { [ a ] ∣ ( a , n ) = 1 } G=\{[a]|(a,n)= 1\} G={[a](an)=1}. 则 G G G在模 n n n的乘法运算下构成一有限群,阶为 ∣ G ∣ = ϕ ( n ) |G|=\phi (n) G=ϕ(n). 对任给 a ∈ Z , ( a , n ) = 1 a\in Z,(a,n)=1 aZ(an)=1,则 [ a ] ∈ G [a]\in G [a]G,所以[a]的阶是|G|的因子,因此 [ a ] ϕ ( n ) = 1 [a]^{\phi (n)}=1 [a]ϕ(n)=1,也就是 a ϕ ( n ) = 1 ( m o d    n ) a^{\phi (n)}=1 (\mod n) aϕ(n)=1(modn)

证明:若设 ( x 1 , x 2 , ⋯   , x ϕ ( n ) ) (x_1,x_2,\cdots,x_\phi (n)) (x1,x2,,xϕ(n))是模 n n n的一个简化剩余系,那么 ( a x 1 , a x 2 , ⋯   , a x ϕ ( n ) ) (ax_1,ax_2,\cdots,ax_\phi (n)) (ax1,ax2,,axϕ(n)) 也是模 n n n的一个简化剩余系。
∑ i = 1 ϕ ( n ) x i = ∑ i = 1 ϕ ( n ) a ⋅ x i m o d    n \sum_{i=1}^{\phi (n)}x_i=\sum_{i=1}^{\phi (n)}a\cdot x_i \mod n i=1ϕ(n)xi=i=1ϕ(n)aximodn
由于 ( x i ′ , n ) = 1 (x'_i,n)= 1 (xin)=1, ∑ i = 1 ϕ ( n ) x i = 1 m o d    n \sum_{i=1}^{\phi (n)}x_i=1 \mod n i=1ϕ(n)xi=1modn
因此结论成立。

定义1.1.8 群G的一个子群H称为正规子群,如果对任何 a ∈ G a\in G aG h ∈ H h\in H hH,有 a h a − 1 ∈ H aha^{-1}\in H aha1H. 如果H是G的正规子群,我们记成 H ⊲ G H\lhd G HG.

定理1.1.9 设H是群G的子群,则下列条件彼此等价:

  1. H ⊲ G H\lhd G HG;
  2. 对于每个 g ∈ G g\in G gG g H g − 1 = H gHg^{-1}=H gHg1=H
  3. H的每个左陪集都是右陪集.事实上,对于每个 g ∈ G g\in G gG,gH=Hg.

定理1.1.10 如果群G的子群 H 是正规的,则模H的陪集的集合在运算(aH).(bH)=(ab)H下构成一个群.

定义1.1.10 设H是G的正规子群,定理1.1.10中由H的陪集定义的群称为G关于H 的商群,记作G/H.

例子:整数群的商群:考虑整数群Z和它的子群2Z(由所有偶数组成),则Z/2Z表示由偶数与奇数构成的两个等价类组成的群,其中群运算是对应元素的加法运算。
0 + 0 = 0 0 + 0 = 0 0+0=0
0 + 1 = 1 0 + 1 = 1 0+1=1
1 + 0 = 1 1 + 0 = 1 1+0=1
1 + 1 = 0 1 + 1 = 0 1+1=0

定理1.1.11 如果G是有限群,则|G/H|=|G|/|H|.

定义1.1.10 一个群G称为循环群,如果存在一个元素 a ∈ G a\in G aG使得G=(a).这样的元素a称为G的生成元.

对于一个循环群G,离散对数问题是指找到一个整数k,使得G的生成元素a的k次幂等于另一个给定的元素b。这个问题在密码学中非常重要,因为它是很多加密算法的基础,如Diffie-Hellman密钥交换、ElGamal加密算法等。
在这里插入图片描述

同构是指两个代数结构之间存在一个双射(一一映射)以及这个双射保持原有的代数结构运算。具体来说,如果两个代数结构A和B之间存在一个双射f,使得对于A中的任意元素a和b,f(a+b)=f(a)+f(b)和f(ab)=f(a)f(b)都成立,那么我们就称A和B是同构的。
同构可以理解为两个代数结构在代数结构上完全相同的概念。

同态:描述了两个代数结构之间的结构保持映射。具体来说,如果有两个代数结构A和B以及它们之间的映射f:A→B,如果对于A中的任意两个元素a1和a2,f(a1·a2)=f(a1)·f(a2)成立,其中“·”表示A中的运算,那么f就是一个同态映射。这意味着,映射f保持了A中元素之间的运算关系,并且将A中的单位元素映射到B中的单位元素。

同态基本定理:设 φ : G 1 → G 2 \varphi: G_1 \rightarrow G_2 φ:G1G2是一个群同态,其中 G 1 G_1 G1 G 2 G_2 G2是两个群。那么,同态基本定理给出了以下结论:

  1. { im ⁡ ( φ ) = φ ( g ) ∣ g ∈ G 1 } \{\operatorname{im}(\varphi) = {\varphi(g) | g \in G_1} \} {im(φ)=φ(g)gG1} G 2 G_2 G2的一个子群,即 im ⁡ ( φ ) ≤ G 2 \operatorname{im}(\varphi) \le G_2 im(φ)G2
  2. { ker ⁡ ( φ ) = g ∈ G 1 ∣ φ ( g ) = e G 2 } \{\ker(\varphi) = {g \in G_1 | \varphi(g) = e_{G_2}}\} {ker(φ)=gG1φ(g)=eG2} G 1 G_1 G1的一个正规子群;
  3. 存在一个同构 ψ : G 1 / ker ⁡ ( φ ) → im ⁡ ( φ ) \psi: G_1/\ker(\varphi) \rightarrow \operatorname{im}(\varphi) ψ:G1/ker(φ)im(φ),使得 ψ ( g ker ⁡ ( φ ) ) = φ ( g ) \psi(g\ker(\varphi)) = \varphi(g) ψ(gker(φ))=φ(g)对于任意 g ∈ G 1 g \in G_1 gG1成立。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值