1.2 环与理想
定义1.21 一个环是一个集合 R,配上两种二元运算 +(加法)和 ⋅(乘法),满足以下条件:
- (R,+)是一个可数交换群,其中 0表示加法的单位元。
- (R,⋅)是一个可数半群,满足结合律, a ⋅ ( b ⋅ c ) = a ⋅ ( b ⋅ c ) a⋅(b⋅c)=a⋅(b⋅c) a⋅(b⋅c)=a⋅(b⋅c)
- 满乘法满足分配律,即对于任意 a , b , c ∈ R a,b,c∈R a,b,c∈R, 有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a⋅(b+c)=a⋅b+a⋅c a⋅(b+c)=a⋅b+a⋅c 和 ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (a+b)⋅c=a⋅c+b⋅c (a+b)⋅c=a⋅c+b⋅c。
定义 1.2.2
1)一个环称为有单位元的,如果它有乘法单位元1.
2)一个环称为交换环,如果其中的乘法运算是交换的.
3)一个环称为整环,如果它是一个交换的有单位元的环, 1 ≠ 0 1\ne 0 1=0且对于任意的 a ≠ 0 , b ≠ 0 ⟹ a b ≠ 0. a\ne 0,b\ne 0\Longrightarrow ab\ne0. a=0,b=0⟹ab=0.
4)一个环称为除环,如果所有非零元在乘法运算·下构成一个群.
5)一个交换的除环称为域.
例子 1.2.2
- 设(R,+)为一Abel群,对 a , b ∈ R a,b\in R a,b∈R,定义a·b=0.则R在原来的加法运算+和新定义的乘法运算·下构成一环.
- 所有的整数在通常数的加法和乘法运算下形成一个整环,称为整数环,用 Z \mathbb{Z} Z表示.
- 所有偶数在通常数的加法和乘法运算下形成一个没有单位元的交换环.
- 所有从实数到实数的映射按照运算(f+g)(x)=f(x)+g(x),(fg)(x)=f(x)g(x), ∀ r ∈ R \forall r \in R ∀r∈R 形成一个有单位元的交换环.
- 一个数城K上的所有n阶方阵按照矩阵的加法和乘法构成有单位元的非交换环.
- 所有的有理数在通常数的加法和乘法运算下构成一个域,称为有理数域,记做 Q \mathbb{Q} Q.
定理1.2.1 有限整环是域.
定义1.2.3 环R的一个子集S称为R的一个子环,如果S关于+和·是封闭的并且在这两种运算下形成一个环.
定义1.2.4 环R的一个子集J称为一个理想,如果J是R的一个子环并且对所有 a ∈ J a\in J a∈J, r ∈ R r\in R r∈R,有 a r ∈ J ar \in J ar∈J和 r a ∈ J ra \in J ra∈J.
例1.2.2 设 Q \mathbb{Q} Q为有理数城,则整数集 Z \mathbb{Z} Z是 Q \mathbb{Q} Q的子环,但不是理想.因为 1 ∈ Z 1\in \mathbb{Z} 1∈Z, 1 / 2 Q 1/2 \mathbb{Q} 1/2Q,但是麦 1 ⋅ 1 / 2 ∉ Z 1\cdot 1/2 \notin \mathbb{Z} 1⋅1/2∈/Z.
定义1.2.5 R R R 是一个交换环, R R R的一个理想 J J J称为主理想,如果存在 a ∈ R a\in R a∈R, 使得J=(a).
例子: 整数环 Z \mathcal{Z } Z中生成的主理想$ p \mathcal{Z }$,其中 p p p 是一个质数。这个主理想可以表示为所有 p p p的倍数构成的集合。这个主理想的表示为 p Z = { . . . , − 2 p , − p , 0 , p , 2 p , . . . } pZ=\{...,−2p,−p,0,p,2p,...\} pZ={...,−2p,−p,0,p,2p,...}。
定义1.2.6 设 R R R是一整环.如果 R R R中的每一个理想都是主理想,则称 R R R是主理想整环.
环
R
R
R模
J
J
J的剩余类按运算
(
a
+
J
)
+
(
b
+
J
)
=
(
a
+
b
)
+
J
,
(a+J)+(b+J)=(a+b)+J,
(a+J)+(b+J)=(a+b)+J,
(
a
+
J
)
(
b
+
J
)
=
a
b
+
J
,
(a+J)(b+J)=ab+J,
(a+J)(b+J)=ab+J,
可以形成一个环.
定义1.2.7 按上述运算所作成的由剩余类构成的环称为 R R R模 J J J的剩余类环(或商环),记作 R / J R/J R/J.
定义1.2.8 设 R R R, S S S为环, a , b ∈ R a,b\in R a,b∈R.一个映射 φ : R → S \varphi :R→S φ:R→S称为环同态,如果:
- φ ( a + b ) = φ ( a ) + φ ( b ) , \varphi (a+b)=\varphi (a)+\varphi (b), φ(a+b)=φ(a)+φ(b),
- φ ( a b ) = φ ( a ) φ ( b ) . \varphi (ab)=\varphi (a)\varphi (b). φ(ab)=φ(a)φ(b).
而集合 { k e r p = ( a ∈ R : φ ( a ) = 0 ∈ S } \{kerp=(a\in R:\varphi (a)=0\in S \} {kerp=(a∈R:φ(a)=0∈S}称为同态映射 p p p的核.一个同态映射,如果既是单的又是满的.则称为同构映射.如果两个环之间存在同构映射,我们则说这两个环是同构的,用 ≅ \cong ≅表示.
定理1.2.2(同态基本定理) 设 R R R和 S S S是环.如果 φ : R → S \varphi :R→S φ:R→S是满同态,则 k e r p kerp kerp为 R R R的理想,且 S ≅ R / k e r p S\cong R/kerp S≅R/kerp.反过来,如果 J J J为 R R R的理想,定义映射 p ( a ) = a + J p(a)=a+J p(a)=a+J, a ∈ R a\in R a∈R.则映射 φ : R → R / J \varphi :R→R/J φ:R→R/J 是满同态且 k e r p = J kerp=J kerp=J.
定义1.2.9 设 R R R是一个环,对 R R R中的一个真理想 P P P,如果 a b ∈ P → a ∈ P ab\in P→a\in P ab∈P→a∈P或 b ∈ P b\in P b∈P,则称 P P P为 R R R的素理想.
例子:如果R表示复系数二元多项式环
C
[
X
,
Y
]
C[X, Y]
C[X,Y],那么由多项式
Y
2
−
X
3
−
X
−
1
Y^2 − X^3 − X − 1
Y2−X3−X−1生成的理想是素理想。
证明:
在椭圆曲线密码学中,我们将选取的域上的椭圆曲线记为
E
/
K
E/K
E/K,其中
K
K
K是基域,一般是有限域$ \mathbb{F}_p$ 。在此定义下,椭圆曲线上的点构成了一个交换群,而且可以进行加法和乘法等操作。由多项式
Y
2
−
X
3
−
X
−
1
Y^2 − X^3 − X − 1
Y2−X3−X−1生成的理想即为
⟨
Y
2
−
X
3
−
X
−
1
⟩
,
⟨Y^2 − X^3 − X − 1⟩,
⟨Y2−X3−X−1⟩, 这个理想是由所有满足
y
2
=
x
3
+
x
+
1
y^2=x^3+x+1
y2=x3+x+1的点
(
x
,
y
)
(x,y)
(x,y)组成的集合生成的。根据 Weil 猜想,我们可以证明这个点集构成了一个实际上和某个有限域 𝔽p上的椭圆曲线同构的交换群。由于在有限域上椭圆曲线的点数是有限的,因此这个理想是一个有限生成的理想。下一步,我们需要证明
⟨
Y
2
−
X
3
−
X
−
1
⟩
⟨Y^2 − X^3 − X − 1⟩
⟨Y2−X3−X−1⟩ 中的所有非单位元素都是不可约元素。这个证明涉及到更多的代数几何理论,包括 Hilbert Nullstellensatz 定理,但可以简要地概括为:如果从
⟨
Y
2
−
X
3
−
X
−
1
⟩
⟨Y^2 − X^3 − X − 1⟩
⟨Y2−X3−X−1⟩ 配备的拓扑结构出发,其剩余类环是一个整环,那么这个理想就是素理想。
定义 1.2.10 设 M M M 是环 R R R的一个真理想. 如果对 R R R的任意一个理想 J J J, M ⊂ J M\subset J M⊂J,我们一定有 J = R J=R J=R 或 J = M J=M J=M,则称 M M M是 R R R的极大理想.
定理1.2.3 设 R R R是一个有单位元的交换环,则
1). 理想 M M M是极大理想$\Longleftrightarrow $ R / M R/M R/M是域.
2) 理想 P P P 是素理想$\Longleftrightarrow $ R / P R/P R/P是整环.
3) 每个极大理想都是素理想.