matlab---灰色预测模型
灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法。
灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统。作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统。区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。
灰色系统的特点:
(1)用灰色数学处理不确定量,使之量化。
(2)充分利用已知信息寻求系统的运动规律。
(3)灰色系统理论能处理贫信息系统。
灰色生成
将原始数据列中的数据,按某种要求作数据处理称为生成。常用的灰色系统生成方式有:累加生成、累减生成、均值生成、级比生成等,下面主要介绍累加生成。
累加生成
GM(1,1)模型
则预测值的求解为:
GM(1,1)模型精度检验
灰色预测模型matlab源码
- 根据上面的介绍,我们把过程写成代码。最后只需要输入预测值,就可以得到预测的数据,代码如下所示:
function []=greymodel(y)
%本程序主要用来计算根据灰色理论建立的模型的预测值。
%应用数学模型是GM(1,1).
%原始数据的处理方法是一次累加法。
y=input('请输入数据');
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
B(i,1)=-(yy(i)+yy(i+1))/2;
B(i,2)=1;
end
BT=B';
for j=1:n-1
YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
u=A(2);
t=u/a;
i=1:n+2;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;
yys(1)=y(1);
for j=n+2:-1:2
ys(j)=yys(j)-yys(j-1);
end
x=1:n;
xs=2:n+2;
yn=ys(2:n+2);
plot(x,y,'^r',xs,yn,'*-b');
det=0;
sum1=0;
sumpe=0;
for i=1:n
sumpe=sumpe+y(i);
end
pe=sumpe/n;
for i=1:n;
sum1=sum1+(y(i)-pe).^2;
end
s1=sqrt(sum1/n);
sumce=0;
for i=2:n
sumce=sumce+(y(i)-yn(i));
end
ce=sumce/(n-1);
sum2=0;
for i=2:n;
sum2=sum2+(y(i)-yn(i)-ce).^2;
end
s2=sqrt(sum2/(n-1));
c=(s2)/(s1);
disp(['后验差比值为:',num2str(c)]);
if c<0.35
disp('系统预测精度好')
else if c<0.5
disp('系统预测精度合格')
else if c<0.65
disp('系统预测精度勉强')
else
disp('系统预测精度不合格')
end
end
end
disp(['下个拟合值为',num2str(ys(n+1))]);
disp(['在下个拟合值为',num2str(ys(n+2))]);