数模(03)---灰色预测模型


        灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法。
        灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统。作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统。区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。

       灰色系统的特点:
       (1)用灰色数学处理不确定量,使之量化。
       (2)充分利用已知信息寻求系统的运动规律。
       (3)灰色系统理论能处理贫信息系统。

灰色生成

       将原始数据列中的数据,按某种要求作数据处理称为生成。常用的灰色系统生成方式有:累加生成、累减生成、均值生成、级比生成等,下面主要介绍累加生成。

累加生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GM(1,1)模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
则预测值的求解为:
在这里插入图片描述

GM(1,1)模型精度检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

灰色预测模型matlab源码

  • 根据上面的介绍,我们把过程写成代码。最后只需要输入预测值,就可以得到预测的数据,代码如下所示:
function []=greymodel(y)
%本程序主要用来计算根据灰色理论建立的模型的预测值。
%应用数学模型是GM11.
%原始数据的处理方法是一次累加法。
y=input('请输入数据');
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
    yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
    B(i,1)=-(yy(i)+yy(i+1))/2;
    B(i,2)=1;
end
BT=B';
for j=1:n-1
    YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
u=A(2);
t=u/a;
i=1:n+2;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;
yys(1)=y(1);
for j=n+2:-1:2
    ys(j)=yys(j)-yys(j-1);
end
x=1:n;
xs=2:n+2;
yn=ys(2:n+2);
plot(x,y,'^r',xs,yn,'*-b');
det=0;
 
sum1=0;
sumpe=0;
for i=1:n
    sumpe=sumpe+y(i);
end
pe=sumpe/n;
for i=1:n;
    sum1=sum1+(y(i)-pe).^2;
end
s1=sqrt(sum1/n);
sumce=0;
for i=2:n
    sumce=sumce+(y(i)-yn(i));
end
ce=sumce/(n-1);
sum2=0;
for i=2:n;
    sum2=sum2+(y(i)-yn(i)-ce).^2;
end
s2=sqrt(sum2/(n-1));
c=(s2)/(s1);
disp(['后验差比值为:',num2str(c)]);
if c<0.35
    disp('系统预测精度好')
else if c<0.5
        disp('系统预测精度合格')
    else if c<0.65
            disp('系统预测精度勉强')
        else
            disp('系统预测精度不合格')
        end
    end
end
disp(['下个拟合值为',num2str(ys(n+1))]);
disp(['在下个拟合值为',num2str(ys(n+2))]);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值