异构联邦持续学习的精确遗忘--ACCURATE FORGETTING FOR HETEROGENEOUS FEDERATED CONTINUAL LEARNING

主要贡献

  • 针对的问题
    • 不同客户端之间的数据/任务可能不相关甚至对立
    • 客户端之间的统计异质性和数据噪声可能表现出虚假相关性,从而导致有偏见的特征学习
  • 选择忘记有偏见的知识
    • 精确遗忘,选择性的利用联邦学习网络中先前的知识
    • 采用基于规范化流模型的框架来量化先前知识的可信度

Introduction

FCL可能遇到的问题

  • 本地客户端之间的非 IID 数据导致的统计异质性。这种异质性可能会严重降低与客户端协作学习时的性能
  • 灾难性遗忘,源于由于存储限制、隐私问题等现实因素而限制对先前任务的数据访问。这可能导致模型在吸收新任务后失去熟练执行先前任务的能力。
  • 联邦场景导致的特征偏差的潜在引入有关,这反过来可能会影响 CL 模型中的记忆。研究表明,记忆嘈杂的标签会严重损害模型的性能

NF模型

  • 通过一系列双射变换将任意复杂的数据分布映射到预定义的分布。
  • 虽然NF模型中的信息可能包含有偏差的特征或由于异构数据而产生的虚假相关性,但我们认为,相对于当前任务的异常特征是可疑的,可能构成威胁学习的过程。更准确地说,一个特定特征的可信度可以用它在当前任务中的概率密度来量化。

定义

无限任务池: 客户端的任务从任务存储库中随机选择,导致俩个客户端可能不共享任何公共任务
特征偏差:实验设置时,放大不同客户端的偏差

NF

归一化流–> 一种生成模型

AF-FCL

  • 特征重放
    • 为了防止完全遗忘,我们在分类器的特征空间中训练了一个全局NF模型用于生成重播。
  • 知识提炼
    • 此外,我们在特征空间中使用知识蒸馏来减轻显著漂移,从而增强了NF模型训练过程的稳定性。
  • 相关估计
    • 与当前任务相关的异常特征可能会潜在地破坏学习过程。因此,我们通过生成的特征在当前任务中的概率密度来评估其可靠性。

在这里插入图片描述

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 1 channel pruned yolov5-based深度学习方法是一种快速准确的物体检测方法。 Yolov5是一种深度学习模型,用于目标检测任务。它具有快速高效的特点,适用于需要实时处理大量目标的场景。然而,传统的yolov5模型在一些应用中存在着计算复杂度高、模型参数多等问题。 为了解决这些问题,提出了一种基于通道剪枝的方法。通道剪枝是一种模型压缩技术,通过减少模型中的参数量和计算量,来实现模型的快速推理。 该方法首先对初始的yolov5模型进行训练,然后使用通道剪枝算法来剪枝模型中的冗余通道。剪枝后,模型的参数数量和计算量显著减少,同时保持了模型的准确性。 经过实验证明,采用1 channel pruned yolov5-based深度学习方法的物体检测任务的准确性与传统yolov5模型相当,但速度更快。这种方法具有广泛的应用前景,可以在实时场景下实现快速高效的目标检测,如智能交通系统、安防监控等。 总而言之,1 channel pruned yolov5-based深度学习方法是一种快速准确的物体检测方法,通过通道剪枝技术实现模型的压缩,提高了模型的计算效率,适用于需要实时处理大量目标的应用场景。 ### 回答2: 1通道修剪 YOLOv5 基于深度学习的快速准确方法: 深度学习在计算机视觉领域的广泛应用,如目标检测和识别,已经取得了显著的成果。然而,现有的深度学习模型在实时性和准确性之间存在着一种权衡。为了解决这个问题,我们提出了一种基于 YOLOv5 的通道修剪方法,能够实现同时快速和准确的目标检测。 通道修剪是一种通过减少模型中的冗余通道来实现模型压缩和加速的技术。我们观察到,在YOLOv5这样的目标检测模型中,存在着一些冗余的通道,这些通道对目标检测的准确性没有太大的贡献。因此,我们利用剪枝算法对模型中的冗余通道进行剪枝,从而减小模型的大小并提高模型的推理速度。 具体而言,我们首先通过分析模型中各个通道对目标检测的贡献来确定哪些通道是冗余的。然后,我们使用剪枝算法对这些冗余通道进行剪枝,剔除它们对模型推理的影响。通过这种方式,我们实现了模型的压缩和加速。 我们在几个常见的目标检测数据集上进行了实验,结果表明,我们的通道修剪方法不仅能够在保持高准确性的同时,大大减小模型的大小,还能够显著提高模型的推理速度。这使得我们的方法在需要快速而准确的目标检测的场景下具有很大的应用潜力,例如实时视频分析和自动驾驶等领域。 总而言之,我们提出的基于 YOLOv5 的通道修剪方法,通过剪枝冗余通道实现了模型的快速和准确的目标检测。我们的方法对于需要实时性和准确性的应用具有很大的潜力,在未来的研究中可以进一步优化和扩展。 ### 回答3: 基于Yolov5的深度学习方法是一种用于快速而准确的目标检测的通道剪枝方法。 在目标检测任务中,Yolov5是一种常用的深度学习模型,它能够高效地检测图像中的多个目标物体。然而,由于模型设计较为复杂,计算量较大,因此需要较长的处理时间。 为了解决这个问题,研究人员提出了一种基于通道剪枝的方法来对Yolov5模型进行优化。通道剪枝是一种模型压缩技术,它通过剪枝模型中不重要的通道(特征图)来降低计算量,从而实现模型的加速。 这种方法首先使用初始训练集进行基准训练,得到一个初始的Yolov5模型。然后,通过计算每个通道的重要性得分,对模型进行剪枝。具体而言,通道的重要性得分可以通过计算其对目标检测精度的影响来衡量。 一旦剪枝完成,剩余通道将被重新组合成一个新的模型。与原始模型相比,这个新模型计算量更小,因此能够实现更快的推理速度。同时,通过精心设计的剪枝策略和迭代训练,剪枝后模型的准确率也能得到保证。 总之,这种基于通道剪枝的Yolov5深度学习方法可以在保持高准确率的同时,显著缩短模型的推理时间。这对于需要快速且准确地进行目标检测的应用场景非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值