FedGen:Data-Free Knowledge Distillation for Heterogeneous Federated Learning 异构联邦学习的无数据知识蒸馏
面临的问题
用户的异质性—>导致全局模型漂移且收敛缓慢
摘要
传统的知识蒸馏解决用户异质的问题:通过使用异构用户的聚合知识来改进服务器模型,这种方法依赖于代理数据集(不符合实际)。并且聚合的知识没有被充分利用来指导局部模型学习,这可能反过来影响聚合模型的质量。
本文采用的方法:
- 提出了一种无数据的知识蒸馏方法来解决异构 FL。
- 服务器学习一个轻量级生成器以无数据的方式集成用户信息;
- 然后将其广播给用户,用学到的知识调节本地训练作为归纳偏置。
Introduction
俩个解决用户异质性的角度:
- 通过调节局部模型与全局模型在参数空间上的偏差来稳定局部训练。(这种方法可能无法充分利用用户模型的基础知识,其多样性表明其本地数据的信息结构差异)
- 提高模型聚合的效率。(以未标记的数据集作为代理,知识蒸馏通过使用局部模型的集成知识丰富全局模型,减轻了异质性引起的模型漂移问题,这比简单的参数平均更有效。— 但是数据集可能并不总是在服务器上可用)
本文的方法:FL 的无数据知识蒸馏方法(FedGen)
具体来说,FEDGEN 学习一个 仅从用户模型的预测规则
里派生出的生成模型
,在给定目标标签的情况下,该生成模型可以产生与用户预测集合
一致的特征表示。将该生成器广播给用户,在潜在空间
中使用增强样本来帮助他们的模型训练,这体现了从其他同行用户那里提取的知识。给定一个维度远小于输入空间的潜在空间,FEDGEN 学习的生成器可以是轻量级的,从而给当前 FL 框架带来最小的开销。
优点:
- 它从用户中提取知识,而这些知识在模型平均后会被减轻,而不依赖于任何外部数据。
- 与仅细化全局模型的某些先前工作相反,我们的方法使用
提取的知识直接调节局部模型更新
。我们表明,此类知识对局部模型施加了归纳偏差
,从而在非独立同分布数据分布下获得更好的泛化性能。 - 此外,所提出的方法已准备好解决更具挑战性的 FL 场景,在这些场景中,由于隐私或通信限制,共享整个模型参数是不切实际的,因为所提出的方法只需要本地模型的
预测层
来进行知识提取。
Notations and Preliminaries
联邦学习旨在学习一个由 θ \theta θ 参数化的全局模型,以最大限度地降低其对每个用户任务 T k T_k Tk 的风险