SimCLR:用于视觉表征的对比学习框架

SimCLR是一种对比学习框架,通过数据增强、大Batch Size训练和非线性投影头提升无监督视觉表征质量。研究发现,对比学习在数据增强方面受益更多,且大模型和大Batch Size训练能提升性能。SimCLR在ImageNet等数据集上展现出与监督学习相媲美的性能,尤其在半监督和迁移学习任务中表现出色。
摘要由CSDN通过智能技术生成

论文链接: https://arxiv.org/pdf/2002.05709.pdf

官方github链接: https://github.com/google-research/simclr

他人复现pytorch链接: https://github.com/sthalles/SimCLR

1 概况

核心观点:

  1. 数据增强(data augmentations)的组合对预测任务的表现有重要影响,对于非监督学习而言,数据增强的提升作用更大;
  2. 本文定义了一个对比损失和表征之间的可学习非线性转换,大幅提高了表征的质量;
  3. 具有对比交叉熵损失(contrastive cross entropy loss)的表征学习得益于归一化嵌入和适当地调整温度参数;
  4. 与监督学习相比,对比学习可以通过更多的训练和更大的Batch Size 获得更好的表现,更深更宽的网络对对比学习表现的提升也有益。

框架效果:

  1. 在对Image Net 进行分类实验时,在top-1精度上取得了76.5%的结果,获比之前最先进的无监督或半监督提升7%,与有监督的Res-Net-50性能相媲美;

  2. 对Image Net 1%的Label 进行微调时,SimCLR 实现了85.8%的top-5精度,相对性能提升10%,超越了100× fewer label的AlexNet;

  3. 在其他自然图像分类数据集上进行微调时,SimCLR 在12个数据集中的10个数据集上的表现相当于或优于强监督的Baseline。

    ImageNet Top-1精度表现

2 方法

2.1 对比学习框架

SimCLR 通过潜在空间上的对比损失,最大化相同数据示例的不同增强视图之间的协议进行表征学习,主要由四个主要组件组成:

  1. 随机数据增强模块

    将任意给定的数据示例随即转换为同一示例的两个相关视图,用 x ~ i \widetilde{x}_i x i x ~ j \widetilde{x}_j x j表示,将其视为一个正对。本文使用了三种方法进行数据增强:随即裁剪和调整(如随机翻转)(裁剪后调整图像尺寸为原图大小),随机色彩失真随机高斯模糊,作者认为随即裁剪和色彩失真的结合是使网络具有良好性能的关键。

  2. 神经网络基编码器(base encoder)

    基编码器定义为 f ( ⋅ ) f(·) f(),其作用在于从增强后的数据集中提取表征向量。作者认为SimCLR可以在无任何约束的情况下选择各种网络架构的基编码器,论文中选择的是常见的ResNet。因此,对于数据 x ~ i \widetilde{x}_i x i,有:
    h i = f ( x ~ i ) = R e s N e t ( x ~ i ) \boldsymbol{h}_i=f(\widetilde{x}_i)=ResNet(\widetilde{x}_i) hi=f(x i)=ResNet(x i)
    其中, h i ∈ R d \boldsymbol{h}_i\in\R^d hiRd,为经过平均池化层之后的输出。

  3. 小型神经网络投影头(projection head)

    投影头 g ( ⋅ ) g(·) g()的作用是将编码后的表征 h i h_i hi映射到应用对比损失的潜在空间中,本文使用的是一个两层MLP,具体计算方法如下:
    z i = g ( h i

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值