联邦迁移学习的挑战与展望

《联邦学习》(杨强等著)读书笔记

横向联邦学习和纵向联邦学习要求所有的参与方具有相同的特征空间或样本空间,从而建立起一个有效的共享机器学习模型。然而,在更多的实际情况下,各个参与方所拥有的数据集可能存在高度的差异:

  1. 参与方的数据集之间可能只有少量的重叠样本和特征。

  1. 这些数据集的分布情况可能差别很大。

  1. 这些数据集的规模可能差异很大。

  1. 某些参与方可能只有数据,没有或只有很少的标注数据。

为了解决这些问题,联邦学习可以结合迁移学习技术,使其可以应用于更广的业务范围,同时可以帮助只有少量数据(较少重叠的样本和特征)和弱监督(较少标记)的应用建立有效且精确的机器学习模型,并且遵守数据隐私和安全条例的规定。我们将这种组合称为联邦迁移学习,它可以处理超出现有横向联邦学习和纵向联邦学习能力范围的问题。

迁移学习是一种为跨领域知识迁移提供解决方案的学习技术。在许多应用中,我们只有小规模的标注数据或者较弱的监督能力,这导致可靠的机器学习模型并不能被建立起来。在这些情况下,我们仍然可以通过利用和调适相似任务或者相似领域中的模型,建立高性能的机器学习模型。

迁移学习的本质是发现资源丰富的源域和资源稀缺的目标域之间的不变性(或相似性),并利用该不变性在两个领域之间传输知识。基于执行迁移学习的方法,迁移学习主要分为三类:基于实例的迁移、基于特征的迁移和基于模型的迁移。联邦迁移学习将传统的迁移学习扩展到了面向隐私保护的分布式机器学习范式中。

从技术角度来看,联邦迁移学习和传统的迁移学习主要有以下两方面的不同:

  1. 联邦迁移学习基于分布在多方的数据来建立模型,并且每一方的数据不能集中到一起或公开给其他方。传统迁移学习没有这样的限制。

  1. 联邦迁移学习要求对用户隐私和数据(甚至模型)安全进行保护,这在传统迁移学习中并不是一个主要关注点。

传统的迁移学习通常以顺序化或中心化的方式进行。顺序迁移学习是指首先在源任务上学习迁移知识,之后应用于目标域,以提升目标模型的性能。顺序迁移学习在计算机视觉领域中是普遍存在且高效的,它通常以预训练模型的方式,在ImageNet等大型图像数据集上进行。顺序迁移学习也经常用在自然语言处理中,将基本语言单元(如单词、词组或句子)编码为分布式表征。集中迁移学习是指迁移学习所涉及的模型和数据都集中于一处。因此,传统的迁移学习在许多实际应用场景都是不适用的。因为在这些场景中,数据常分散于多方,并且隐私安全是一个主要的关注点。联邦迁移学习是解决这类问题的一种可行的、具有前景的解决方案。

虽然将迁移学习与联邦学习框架相结合的研究工作发展迅速,然而在实际应用中,联邦迁移学习仍然面临诸多的挑战,这里列举了其中的三个挑战:

  1. 我们需要制定一种学习可迁移知识的方案。该方案能够很好地捕捉参与方之间的不变性。在顺序迁移学习和集中迁移学习中,迁移知识通常使用一个通用的预训练模型来表示。联邦迁移学习中的迁移知识由各参与方的本地模型共同学习得到。每一个参与方都对各自本地模型的设计和训练拥有完全的控制权。在联邦迁移学习模型的自主性和泛化性能之间,我们需要寻求一种平衡。

  1. 我们需要确定如何在保证所有参与方的共享表征的隐私安全的前提下,在分布式环境中学习迁移知识表征的方法。在联邦学习框架中,迁移知识表征不仅是以分布式的方式学习得到的,还通常不允许暴露给任何参与方。因此,我们需要精确地了解每一个参与方对共享表征作出的贡献,并考虑如何保护每个参与方所贡献信息的隐私安全。

  1. 我们需要设计能够部署在联邦迁移学习中的高效安全协议。联邦迁移学习通常需要参与方之间在通信频率和传输数据的规模上进行更密切的交互。在设计或选择安全协议的时候需要仔细考虑,以便在安全性和计算开销之间取得平衡。

当然,还有许多其他的挑战和困难有待研究人员和工程师们去解决。我们设想,随着联邦迁移学习带来的实用价值越来越高,越来越多的机构和企业将会把资源投入相关研究和实现中来。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值