paper
文章平均质量分 84
论文精读之路
凡心curry
给予你诗意的理性
展开
-
R-CNN、Fast R-CNN、Faster R-CNN理论合集
目录R-CNN算法流程候选区域的生成对每个候选区域,使用深度网络提取特征特征送入每一类的SVM分类器,判定类别非极大值抑制剔除重叠建议框使用回归器精细修正候选框位置R-CNN框架R-CNN存在的问题Fast R-CNN算法流程与R-CNN的对比训练数据的采样ROI Pooling Layer分类器(第一个FC层)边界框回归器(第二个FC层)Multi-task lossFast R-CNN框架Faster R-CNN算法流程Conv layersRPN网络结构训练样本的采样RPN Multi-task lo原创 2021-08-24 14:27:21 · 876 阅读 · 0 评论 -
ZFNet——Visualizing and Understanding Convolutional Networks
目录BackgroundArchitectureConclusionBackgroundILSVRC2013分类任务的冠军,top5的错误率为11.7%,使用反卷积对CNN的中间特征图进行可视化分析,通过分析特征行为找到提升模型的办法,微调Alexnet提升了表现。这个网络结构除了在ILSVRC2013分类任务取得冠军外,另一个重要的贡献是提出了对卷积神经网络中间层可视化的方法,也是利用了这个方法更好的进行了调参。ArchitectureConclusion与AlexNet网络的区别:第1个原创 2021-06-15 09:46:48 · 186 阅读 · 0 评论 -
GoogLeNet——Going deeper with convolutions
目录MotivationArchitectureInceptionGoogLeNetConclusionGoogLeNet在2014年由Google团队提出,斩获当年lmageNet竞赛中Classification Task(分类任务)第一名。Motivation提高深度神经网络性能的最直接方法是增加它们的规模。这包括增加网络的深度(层数)和宽度(每层的单元数)。这是训练更高质量模型的一种简单而安全的方式,特别是在大量标签训练数据可用的情况下。然而,这个简单的解决方案有两个主要缺点:更大的规模通原创 2021-06-04 17:16:17 · 291 阅读 · 2 评论 -
ResNet模型——Deep Residual Learning for Image Recognition
目录motivationsolutionArchitecturesSummarymotivation通过总结前人的经验,我们常会得出这样的结论:通过堆叠神经网络层数(增加深度)可以非常有效地增强表征,提升特征学习效果。但是此时有几个问题需要考虑:学习更好的网络是否像堆叠更多层一样容易?梯度消失/爆炸问题从一开始就阻碍了收敛。然而,这个问题在很大程度上已经通过归一化初始化和中间归一化层来解决,这使得具有数十层的网络能够开始收敛通过具有反向传播的随机梯度下降法。更深层的网络收敛是收敛了,却出现了效果原创 2021-05-17 14:59:47 · 386 阅读 · 3 评论 -
Word2vec——Efficient Estimation of Word Representations in Vector Space
目录摘要介绍NNLMRNNLMWord2vecLog-linear model原理Skip-gramCBOW研究意义摘要提出了两种新颖的模型结构用来计算词向量采用一种词相似度的任务来评估对比词向量质量大量降低模型计算量可以提升词向量质量进一步,在我们的语义和句法任务上,我们的词向量是当前最好的效果介绍传统NLP把词当成最小单元处理.并且能够在大语料上得到很好的结果,其中一个例子是N-grams模型然而很多自然语言处理任务只能提供很小的语料,如语音识别、机器翻译,所以简单地扩大数据规模来原创 2021-05-10 20:54:06 · 1246 阅读 · 2 评论 -
AlexNet——ImageNet Classification with Deep Convolutional Neural Networks
研究意义拉开卷积神经网络统治计算机视觉的序幕加速计算机视觉应用落地研究成果SIFT+FVS:ILSVRC-2012分类任务第二名1 CNN:训练1个AlexNet5 CNNs:训练5个AlexNet取平均值1CNN*:在最后一个池化层之后,额外添加6个卷积层,并使用ImageNet(秋)数据集上预训练7CNNs*:两个预训练微调,与5CNNs取平均值...原创 2021-05-06 20:15:03 · 660 阅读 · 1 评论 -
VGG——Very Deep Convolutional Networks for Large-Scale Image Recognition
目录AbstractquestionmethodanswerIntroductionwhy research?ContributionDetailsArchitectureTrainingTestingConclusionAbstractquestion大规模图像识别任务下卷积网络深度对其预测准确率的影响。method使用具有非常小的(3×3)卷积滤波器的架构对深度不断递增的网络进行全面评估。answer通过将权重层深度推到16-19层可以在现有技术配置下(使准确率)实现显著提升。在Image原创 2021-05-05 14:41:14 · 550 阅读 · 0 评论 -
FaceNet深度分析(PPT思路版)
FaceNet深度分析目录FaceNet深度分析一、研究背景二、研究思路三、关键技术四、实验结果五、研究总结附录一、研究背景二、研究思路三、关键技术四、实验结果五、研究总结附录...原创 2021-04-19 14:50:14 · 326 阅读 · 0 评论