Deep Learning
文章平均质量分 70
从机器学习到深度学习
凡心curry
给予你诗意的理性
展开
-
python随机从图像和标签中抽取数据对
获得图像和对应标签后,往往要从中抽取部分数据对作为验证集或者测试集。以下是按比例抽取,按固定数量抽取和抽取后原文件夹删除这部分数据等几种方式的详细代码。原创 2023-04-19 11:17:18 · 398 阅读 · 0 评论 -
如何合成语义分割标签图和预测结果图
训练完语义分割模型后,为了更直观看出模型的效果,有时需要将标签图和预测结果图合成为一张图,方便我们更加容易看出预测正确的区域、误检检的区域和漏检的区域。因为很多时候都习惯用012…等像素值来代表不同的物体类别,所以这里以灰度图为例子,用python合成两张图像。原创 2023-03-20 15:45:16 · 1005 阅读 · 6 评论 -
深度学习工程师
目录大纲1 数学基础2 Python基础3 机器学习4 深度学习5 深度学习平台实战6 深度学习行业应用案例大纲1 数学基础(5%)熟悉微积分基础知识,包括极限与积分、导数与二阶导数、方向导数、凸函数与极值、最优化方法;熟悉概率与统计基础,包括古典概率、常用概率分布、贝叶斯公式、假设校验;熟悉线性代数基础,包括矩阵与向量、矩阵乘法、矩阵特征值和特征向量。2 Python基础(5%)掌握Python基础知识;掌握Python常用库的基本操作,包括numpy、matplotlib、sklearn原创 2021-10-23 12:24:58 · 431 阅读 · 0 评论 -
激活函数及可视化
目录前言Sigmoid 函数Tanh 函数ReLU 函数神经网络的建立总结前言激活函数的引入主要是为了解决非线性问题。简单的说,传统的全连接网络就是让数据不断的通过线性函数层和激活函数层,进而得到最终的预测结果。常见的激活函数有 Sigmoid 函数(又名 Logistic 函数)、tanh 函数(又名双曲正切函数),ReLU 函数(又名线性修正单元函数)等。Sigmoid 函数Sigmoid 函数是深度学习发展中最经典的且最先被使用的激活函数之一。它的公式如下所示:σ(z)=11+e−z\si原创 2021-08-17 15:32:45 · 633 阅读 · 0 评论 -
Softmax 和交叉熵损失函数
目录Softmax 函数交叉熵损失函数学习率衰减策略Softmax 函数Softmax 函数函数是机器学习和深度学习中相当常用到的函数,它的公式如下:softmax(S)=esk∑jesjsoftmax(S)=\frac { e ^ { s _ { k } } } { \sum _ { j } e ^ { s _ { j } } } softmax(S)=∑jesjesk其中 ???????? 表示的是输入到 Softmax 函数的数据。Softmax 函数具体的作用是将输入标准化到原创 2021-08-10 10:36:39 · 4751 阅读 · 0 评论 -
RNN和LSTM网络结构
目录RNNRNN结构LSTMLSTM结构遗忘门输入门输出门RNNRNN 网络是一种基础的多层反馈神经网络,该神经网络的节点定向连接成环,其内部状态可以展示动态时序行为。相比于前馈神经网络,该网络内部具有很强的记忆性,它可以利用它内部的记忆来处理任意时序的输入序列。因为循环神经网络可以将序列进行较好的处理,且时间同样也是有序数列,在实际应用中,RNN 循环神经网络对于处理时序数据具有天然的优势。RNN结构其中最为普遍的系统形式为:s(t)=f(s(t−1);θ) s^{(t)}=f(s^{(t-1)原创 2021-05-12 19:39:18 · 518 阅读 · 0 评论 -
top1和top5 error直白理解
结论直接上结论,既然是error所以,top-1 error rate和top-5 error rate越小说明模型越准确。作用出自于ImageNet,用于评判模型的性能,比如ImageNet Classification with Deep Convolutional Neural Networks一文中就有对于top-5 error rate的描述:where the top-5 error rate is the fraction of test images for which thec原创 2021-05-09 15:31:50 · 2744 阅读 · 2 评论