训练完语义分割模型后,为了更直观看出模型的效果,有时需要将标签图和预测结果图合成为一张图,方便我们更加容易看出预测正确的区域、误检检的区域和漏检的区域。因为很多时候都习惯用
0
、
1
、
2
…等像素值来代表不同的物体类别,所以这里以灰度图为例子,用python合成两张图像。
代码
from PIL import Image
img = Image.open("1.png")
img = img.convert("L") # 转换为灰度图像
img = img.point(lambda x: x * 0.5) # 设置透明度为50%
background = Image.open("2.png")
background = background.convert("RGB") # 转换为RGB模式
background.paste(img, (0, 0), img)
background = background.convert("L")
background.save('he.png',"PNG")
效果
如果所示,我们可以看出绿色是正确预测的部分;蓝色为漏检部分;红色为误检部分(颜色可以根据需要调整)