pytorch
文章平均质量分 76
凡心curry
给予你诗意的理性
展开
-
pytorch损失函数与优化器
目录损失函数优化器模型建立总结损失函数torch.nn 中存在很多封装好的损失函数。比如均方差损失,用 torch.nn.MSELoss() 表示。import torchimport torch.nn as nn# 初始化数据集X = torch.tensor([1, 2, 3, 4], dtype=torch.float32)Y = torch.tensor([2, 4, 6, 8], dtype=torch.float32)w = torch.tensor(0.0, dtype=to原创 2021-05-09 10:37:26 · 708 阅读 · 4 评论 -
pytorch神经网络算法
目录正向传播算法反向传播算法梯度下降算法人工实现pytorch实现正向传播算法设函数的输入数据为 xxx,参数为 www ,输出为 losslossloss。正向传播过程如下:y^=x∗w\hat{y} = x*w y^=x∗ws=y−y^s = y-\hat{y}s=y−y^loss=s2loss = s^2loss=s2import torchdef forward(x, y, w): # 其中 x,y 为输入数据,w为该函数所需要的参数 y_predicted原创 2021-05-08 20:59:01 · 623 阅读 · 2 评论 -
pytorch梯度计算
目录张量梯度梯度计算停止梯度梯度清空张量pytorch定义张量:import torch# 利用 torch.empty() 初始化指定大小的张量,如果不指定值的话,内容为随机值# 传入的参数为想创建的张量大小x = torch.empty(1) # scalar,大小为 1*1 的张量print(x.size())x = torch.empty(3) # vector, 1D,大小为 1*3 的张量print(x.size())x = torch.empty(2, 3) # m原创 2021-05-08 20:04:47 · 521 阅读 · 1 评论