从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

从零开始的目标检测和关键点检测(一):用labelme标注数据集

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

[1]用labelme标注自己的数据集中已经标注好数据集(关键点和检测框),通过labelme2coco脚本将所有的labelme json文件集成为两个coco格式的json文件,即train_coco.json和val_coco.json。训练一个RTMDet模型,需要重写config文件。

一、config文件解读

1、数据集类型即coco格式的数据集,metainfo是指框的类别,因为这里只有一个glue的类,因此NUM_CLASSES为1,注意metainfo类别名后的逗号,

# 数据集类型及路径
dataset_type = 'CocoDataset'
data_root = 'data/glue_134_Keypoint/'
metainfo = {'classes': ('glue',)}
NUM_CLASSES = len(metainfo['classes'])

2、加载backnbone预训练权重和RTMDet-tiny预训练权重

# RTMDet-tiny
load_from = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
backbone_pretrain = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth'
deepen_factor = 0.167
widen_factor = 0.375
in_channels = [96, 192, 384]
neck_out_channels = 96
num_csp_blocks = 1
exp_on_reg = False

3、训练参数设置,如epoch、batchsize…

MAX_EPOCHS = 200
TRAIN_BATCH_SIZE = 8
VAL_BATCH_SIZE = 4
stage2_num_epochs = 20
base_lr = 0.004
VAL_INTERVAL = 5  # 每隔多少轮评估保存一次模型权重

4、default_runtime,即默认设置,在config文件夹的default_runtime.py可看到。不同的MM-框架的默认设置不一样(如default_scope = 'mmdet'),可以包含这个.py也可以直接复制过来。

default_scope = 'mmdet'
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=1),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=2, save_best='coco/bbox_mAP'),
    # auto coco/bbox_mAP_50 coco/bbox_mAP_75 coco/bbox_mAP_s
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='DetVisualizationHook'))
env_cfg = dict(
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='DetLocalVisualizer',
    vis_backends=[dict(type='LocalVisBackend')],
    name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'
load_from = None
resume = False

5、训练超参数配置

train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=MAX_EPOCHS,
    val_interval=VAL_INTERVAL,
    dynamic_intervals=[(MAX_EPOCHS - stage2_num_epochs, 1)])

val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# 学习率
param_scheduler = [
    dict(
        type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,
        end=1000),
    dict(
        type='CosineAnnealingLR',
        eta_min=0.0002,
        begin=150,
        end=300,
        T_max=150,
        by_epoch=True,
        convert_to_iter_based=True)
]

# 优化器
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
    paramwise_cfg=dict(
        norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
auto_scale_lr = dict(enable=False, base_batch_size=16)

6、数据处理pipeline,做数据预处理(数据增强)

# DataLoader
backend_args = None
train_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='CachedMosaic',
        img_scale=(640, 640),
        pad_val=114.0,
        max_cached_images=20,
        random_pop=False),
    dict(
        type='RandomResize',
        scale=(1280, 1280),
        ratio_range=(0.5, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(640, 640)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(
        type='CachedMixUp',
        img_scale=(640, 640),
        ratio_range=(1.0, 1.0),
        max_cached_images=10,
        random_pop=False,
        pad_val=(114, 114, 114),
        prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(type='Resize', scale=(640, 640), keep_ratio=True),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

7、加载数据和标注并用对应pipeliane做预处理

train_dataloader = dict(
    batch_size=TRAIN_BATCH_SIZE,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    batch_sampler=None,
    dataset=dict(
        type='CocoDataset',
        data_root=data_root,
        metainfo=metainfo,
        ann_file='train_coco.json',
        data_prefix=dict(img='images/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=train_pipeline,
        backend_args=None),
    pin_memory=True)
val_dataloader = dict(
    batch_size=VAL_BATCH_SIZE,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='CocoDataset',
        data_root=data_root,
        metainfo=metainfo,
        ann_file='val_coco.json',
        data_prefix=dict(img='images/'),
        test_mode=True,
        pipeline=test_pipeline,
        backend_args=None))
test_dataloader = val_dataloader

8、定义模型结构backbone + neck + head

# 模型结构
model = dict(
    type='RTMDet',
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        mean=[103.53, 116.28, 123.675],
        std=[57.375, 57.12, 58.395],
        bgr_to_rgb=False,
        batch_augments=None),
    backbone=dict(
        type='CSPNeXt',
        arch='P5',
        expand_ratio=0.5,
        deepen_factor=deepen_factor,
        widen_factor=widen_factor,
        channel_attention=True,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True),
        init_cfg=dict(
            type='Pretrained',
            prefix='backbone.',
            checkpoint=backbone_pretrain

        )),
    neck=dict(
        type='CSPNeXtPAFPN',
        in_channels=in_channels,
        out_channels=neck_out_channels,
        num_csp_blocks=num_csp_blocks,
        expand_ratio=0.5,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True)),
    bbox_head=dict(
        type='RTMDetSepBNHead',
        num_classes=NUM_CLASSES,
        in_channels=neck_out_channels,
        stacked_convs=2,
        feat_channels=neck_out_channels,
        anchor_generator=dict(
            type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
        bbox_coder=dict(type='DistancePointBBoxCoder'),
        loss_cls=dict(
            type='QualityFocalLoss',
            use_sigmoid=True,
            beta=2.0,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
        with_objectness=False,
        exp_on_reg=exp_on_reg,
        share_conv=True,
        pred_kernel_size=1,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True)),
    train_cfg=dict(
        assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=30000,
        min_bbox_size=0,
        score_thr=0.001,
        nms=dict(type='nms', iou_threshold=0.65),
        max_per_img=300))

二、开始训练

1、开始训练

python tools/train.py data/glue_134_Keypoint/rtmdet_tiny_glue.py

训练结果

 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.483
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.766
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.766
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.766

2、测试一下训练结果

python demo/image_demo.py data/glue_134_Keypoint/test_image/test.png data/glue_134_Keypoint/rtmdet_tiny_glue.py --weights work_dirs/rtmdet_tiny_glue/best_coco_bbox_mAP_epoch_180.pth --device cpu

在这里插入图片描述

3、可视化训练过程

在这里插入图片描述
在这里插入图片描述

4、由于标注数据集的glue都是小目标的,因此大目标无法识别,如下:
在这里插入图片描述

三、数据集分析

1、可视化部分图像

在这里插入图片描述

框标注-框中心点位置分布

在这里插入图片描述

框标注-框宽高分布

显然都是小目标的检测

在这里插入图片描述

四、ncnn部署

在线模型转换:Deploee

上传文件完成在线转换

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RoBERTa中文预训练模型 概述 中文预训练RoBERTa模型 RoBERTa是BERT的改进版,通过改进训练任务和数据生成方式、训练更久、使用更大批次、使用更多数据等获得了State of The Art的效果;可以用Bert直接加载。 本项目是用TensorFlow实现了在大规模中文上RoBERTa的预训练,也会提供PyTorch的预训练模型和加载方式。 中文预训练RoBERTa模型-下载 6层RoBERTa体验版 RoBERTa-zh-Layer6: Google Drive 或 百度网盘,TensorFlow版本,Bert 直接加载, 大小为200M 推荐 RoBERTa-zh-Large 通过验证 RoBERTa-zh-Large: Google Drive 或 百度网盘 ,TensorFlow版本,Bert 直接加载 RoBERTa-zh-Large: Google Drive 或 百度网盘 ,PyTorch版本,Bert的PyTorch版直接加载 RoBERTa 24/12层版训练数据:30G原始文本,近3亿个句子,100亿个中文字(token),产生了2.5亿个训练数据(instance);覆盖新闻、社区问答、多个百科数据等; 本项目与中文预训练24层XLNet模型 XLNet_zh项目,使用相同的训练数据。 RoBERTa_zh_L12: Google Drive 或 百度网盘 TensorFlow版本,Bert 直接加载 RoBERTa_zh_L12: Google Drive 或百度网盘 PyTorch版本,Bert的PyTorch版直接加载 Roberta_l24_zh_base TensorFlow版本,Bert 直接加载 24层base版训练数据:10G文本,包含新闻、社区问答、多个百科数据等 什么是RoBERTa: 一种强大的用于预训练自然语言处理(NLP)系统的优化方法,改进了Transformers或BERT的双向编码器表示形式,这是Google在2018年发布的自监督方法。 RoBERTa在广泛使用的NLP基准通用语言理解评估(GLUE)上产生最先进的结果。 该模型在MNLI,QNLI,RTE,STS-B和RACE任务上提供了最先进的性能,并在GLUE基准上提供了可观的性能改进。 RoBERTa得分88.5,在GLUE排行榜上排名第一,与之前的XLNet-Large的表现相当。 效果测试与对比 Performance 互联网新闻情感分析:CCF-Sentiment-Analysis 模型 线上F1 BERT 80.3 Bert-wwm-ext 80.5 XLNet 79.6 Roberta-mid 80.5 Roberta-large (max_seq_length=512, split_num=1) 81.25 注:数据来源于guoday的开源项目;数据集和任务介绍见:CCF互联网新闻情感分析 自然语言推断:XNLI 模型 开发集 测试集 BERT 77.8 (77.4) 77.8 (77.5) ERNIE 79.7 (79.4) 78.6 (78.2) BERT-wwm 79.0 (78.4) 78.2 (78.0) BERT-wwm-ext 79.4 (78.6) 78.7 (78.3) XLNet 79.2 78.7 RoBERTa-zh-base 79.8 78.8 RoBERTa-zh-Large 80.2 (80.0) 79.9 (79.5) 注:RoBERTa_l24_zh,只跑了两次,Performance可能还会提升; BERT-wwm-ext来自于这里;XLNet来自于这里; RoBERTa-zh-base,指12层RoBERTa中文模型 问题匹配语任务:LCQMC(Sentence Pair Matching) 模型 开发集(Dev) 测试集(Test) BERT 89.4(88.4) 86.9(86.4) ERNIE 89.8 (89.6) 87.2 (87.0) BERT-wwm 89.4 (89.2) 87.0 (86.8) BERT-wwm-ext - - RoBERTa-zh-base 88.7 87.0 RoBERTa-zh-Large 89.9(89.6) 87.2(86.7) RoBERTa-zh-Large(20w_steps) 89.7 87.0 注:RoBERTa_l24_zh,只跑了两次,Performance可能还会提升。保持训练轮次和论文一致: 阅读理解测试 目前阅读理解类问题bert和roberta最优参数均为epoch2, batch=32, lr=3e-5, warmup=0.1 cmrc20
中文预训练ALBERT模型 概述 中文语料上预训练ALBERT模型:参数更少,效果更好。预训练模型也能拿下13项NLP任务,ALBERT三大改造登顶GLUE基准、 一键运行10个数据集、9个基线模型、不同任务上模型效果的详细对比,见中文语言理解基准测评 CLUE benchmark 一键运行CLUE中文任务:6个中文分类或句子对任务(新) 使用方式: 1、克隆项目 git clone https://github.com/brightmart/albert_zh.git 2、运行一键运行脚本(GPU方式): 会自动下载模型和所有任务数据并开始运行。 bash run_classifier_clue.sh 执行该一键运行脚本将会自动下载所有任务数据,并为所有任务找到最优模型,然后测试得到提交结果 模型下载 Download Pre-trained Models of Chinese 1、albert_tiny_zh, albert_tiny_zh(训练更久,累积学习20亿个样本),文件大小16M、参数为4M 训练和推理预测速度提升约10倍,精度基本保留,模型大小为bert的1/25;语义相似度数据集LCQMC测试集上达到85.4%,相比bert_base仅下降1.5个点。 lcqmc训练使用如下参数: --max_seq_length=128 --train_batch_size=64 --learning_rate=1e-4 --num_train_epochs=5 albert_tiny使用同样的大规模中文语料数据,层数仅为4层、hidden size等向量维度大幅减少; 尝试使用如下学习率来获得更好效果:{2e-5, 6e-5, 1e-4} 【使用场景】任务相对比较简单一些或实时性要求高的任务,如语义相似度等句子对任务、分类任务;比较难的任务如阅读理解等,可以使用其他大模型。 例如,可以使用Tensorflow Lite在移动端进行部署,本文随后针对这一点进行了介绍,包括如何把模型转换成Tensorflow Lite格式和对其进行性能测试等。 一键运行albert_tiny_zh(linux,lcqmc任务): git clone https://github.com/brightmart/albert_zh cd albert_zh bash run_classifier_lcqmc.sh albert_tiny_google_zh(累积学习10亿个样本,google版本) 模型大小16M、性能与albert_tiny_zh一致 albert_small_google_zh(累积学习10亿个样本,google版本) 速度比bert_base快4倍;LCQMC测试集上比Bert下降仅0.9个点;去掉adam后模型大小18. 2、albert_large_zh,参数量,层数24,文件大小为64M 参数量和模型大小为bert_base的六分之一;在口语化描述相似性数据集LCQMC的测试集上相比ber 3、albert_base_zh(额外训练了1.5亿个实例即 36k steps * batch_size 4096); albert_base_zh(小模型体验版), 参数量12M, 层数12,大小为40M 参数量为bert_base的十分之一,模型大小也十分之一;在口语化描述相似性数据集LCQMC的测试集上相比bert_base下降约0.6~1个点; 相比未预训练,albert_base提升14个点 4、albert_xlarge_zh_177k ; albert_xlarge_zh_183k(优先尝试)参数量,层数24,文件大小为230M 参数量和模型大小为bert_base的分之一;需要一张大的显卡;完整测试对比将后续添加;batch_si 快速加载 依托于Huggingface-Transformers 2.2.2,可轻松调用以上模型。 tokenizer = AutoTokenizer.from_pretrained("MODEL_NAME") model = AutoModel.from_pretrained("MODEL_NAME") 其中MODEL_NAME对应列表如下: 模型名 MODEL_NAME albert_tiny_google_zh voidful/albert_chinese_tiny albert_small_google_zh voidful/albert_chinese_small albert_base_zh (from google) voidful/albert_chinese_base albert_large_zh (from

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值