【电磁场与电磁波】 第四章 平行平板波导 (Parallel plate waveguide)

【电磁场与电磁波】 第四章 平行平板波导 ( P a r a l l e l   p l a t e   w a v e g u i d e ) (Parallel \ plate \ waveguide) (Parallel plate waveguide)

平行平板波导的介绍

一个平行平板波导如下图所示:

在这里插入图片描述
波导由两块薄板组成,中间充满了介质,假设这些介质是各向同性的。 T E M TEM TEM 模可以在任何频率被激发,与 T E M TEM TEM 不同的是, T E TE TE 模和 T M TM TM 模只有在高于截断频率时才会传播,且在不同模下截断频率不同。当波的工作频率低于最小模的截止频率时,波开始衰减,并在传播一段距离后消失。同时意味着所以截止频率低于工作频率的模能够共存。为了避免同时出现多个模,工作频率通常设置为两个模截止频率之间。离散模的存在主要取决于:

  1. 波导的形状和大小
  2. 波导中的介质
  3. 工作频率

TEM 波分析

   在导向波的 T E M TEM TEM 模中,波的电场与磁场相互垂直,两者又都位于与沿导波线的传播方向相垂直的横向平面内。若导线的电阻可忽略,则由导线导向的 T E M TEM TEM 波的重要特性之一是任何频率的波的传播速度都与它在无界电介媒质中的传播速度相同。

1.电场与磁场分析

假设平行平板波导中间的介质为LHI,各同向性 L a p l a c e Laplace Laplace 方程如下:
∇ V ( x , y , z ) = ∂ 2 V ∂ x 2 + ∂ 2 V ∂ y 2 + ∂ 2 V ∂ z 2 \nabla V(x,y,z)=\dfrac{\partial^2 {V}}{\partial x^2}+\dfrac{\partial^2 {V}}{\partial y^2}+\dfrac{\partial^2 {V}}{\partial z^2} V(x,y,z)=x22V+y22V+z22V 平行平板波导在 x x x z z z 方向是均匀传播的,故 ∇ 2 V \nabla^2 V 2V 演变为:
∂ 2 V ∂ y 2 = 0 \dfrac{\partial^2 {V}}{\partial y^2}=0 y22V=0 因为只对一个变量求导,故求偏导变为直接对 y y y 求导:
d 2 V d y 2 = 0 \dfrac{d^2 {V}}{d y^2}=0 dy2d2V=0 故问题转换为如下图所示:

在这里插入图片描述
在解问题之前,考虑边界问题: V ( 0 ) = ? V(0)=? V(0)=? V ( d ) = ? V(d)=? V(d)=?
加一个电源 V 0 V_0 V0 到两个薄板,如下图所示:在这里插入图片描述
故边界问题变为: V ( 0 ) = 0 V(0)=0 V(0)=0 V ( d ) = V 0 V(d)=V_0 V(d)=V0
总结起来要解决的问题为:
d 2 V d y 2 = 0         0 ≤ y ≤ d               V ( 0 ) = 0         V ( d ) = V 0 \dfrac{d^2 {V}}{d y^2}=0 \ \ \ \ \ \ \ 0≤y≤d \ \ \ \ \ \ \ \ \ \ \ \ \ V(0)=0 \ \ \ \ \ \ \ V(d)=V_0 dy2d2V=0       0yd             V(0)=0       V(d)=V0 假设该二次导数的解为: V ( y ) = A y + B V(y)=Ay+B V(y)=Ay+B, 将边界条件带入可得: B = 0 B=0 B=0 A = V 0 / d A=V_0/d A=V0/d。故解可表示为:
V ( y ) = V 0 d y V(y)=\frac{V_0}{d}y V(y)=dV0y 得到了电位可以计算电场:
E ‾ = − ∇ V = − a x ‾ ∂ V ∂ x − a y ‾ ∂ V ∂ y − a z ‾ ∂ V ∂ z = − a y ‾ V 0 d \overline{E}=-\nabla V=-\overline{a_x}\dfrac{\partial {V}}{\partial x}-\overline{a_y}\dfrac{\partial {V}}{\partial y}-\overline{a_z}\dfrac{\partial {V}}{\partial z}=-\overline{a_y}\dfrac{V_0}{d} E=V=axxVayyVazzV=aydV0 可以看出,在 y y y 方向的电场也是均匀的,是一个常数,并不随着 y y y 变化。负号表示电场是从上薄板到下薄板。总结如下,如果能忽略边缘电场,则电场能表示为:
E ‾ = { − a y ‾ V 0 d for  0 ≤ x ≤ w   a n d   0 ≤ y ≤ d 0 otherwise  \overline{E}=\begin {cases} -\overline{a_y}\dfrac{V_0}{d} &\text{for } 0≤x≤w \ and \ 0≤y≤d \\ 0 &\text{otherwise }\end {cases} E=aydV00for 0xw and 0ydotherwise  电场如下图所示:

在这里插入图片描述

考虑波往 z z z 方向传播,加上相位之后电场可表达为:
E ‾ = { − a y ‾ V 0 d e − j β z for  0 ≤ x ≤ w   a n d   0 ≤ y ≤ d 0 otherwise  \overline{E}=\begin {cases} -\overline{a_y}\dfrac{V_0}{d}e^{-j\beta z} &\text{for } 0≤x≤w \ and \ 0≤y≤d \\ 0 &\text{otherwise }\end {cases} E=aydV0ejβz0for 0xw and 0ydotherwise  同时可以得到磁场分量:
H ‾ ( x , y , z ) = a z ‾ × E ‾ η = a z ‾ × ( − a y ‾ V 0 d e − j β z ) η = − ( a z ‾ × a y ‾ ) V 0 η d e − j β z = a x ‾ V 0 η d e − j β z \overline{H}(x,y,z)=\frac{\overline{a_z}×\overline{E}}{\eta}=\frac{\overline{a_z}×(-\overline{a_y}\dfrac{V_0}{d}e^{-j\beta z})}{\eta}=-(\overline{a_z}×\overline{a_y})\frac{V_0}{\eta d}e^{-j\beta z}=\overline{a_x}\frac{V_0}{\eta d}e^{-j\beta z} H(x,y,z)=ηaz×E=ηaz×(aydV0ejβz)=(az×ay)ηdV0ejβz=axηdV0ejβz 即:
H ‾ = { a x ‾ V 0 η d e − j β z for  0 ≤ x ≤ w   a n d   0 ≤ y ≤ d 0 otherwise  \overline{H}=\begin {cases} \overline{a_x}\frac{V_0}{\eta d}e^{-j\beta z} &\text{for } 0≤x≤w \ and \ 0≤y≤d \\ 0 &\text{otherwise }\end {cases} H={ axηdV0ejβz0for 0xw and 0ydotherwise 

2. 阻抗分析

    T E M TEM TEM 波的阻抗 Z T E M Z_{TEM} ZTEM 定义为 Z T E M = V 0 I Z_{TEM}=\frac{V_0}{I} ZTEM=IV0,现在来考虑电流 I I I。各向异性磁介质中无限大载流薄板的磁场为: H ‾ 1 s h e e t = K ‾ × n ‾ 2 \overline{H}_{1 sheet}=\frac{\overline{K}×\overline{n}}{2} H1sheet=2K×n,其中 K ‾ \overline{K} K 是表面电流密度, n ‾ = − a y ‾ \overline{n}=-\overline{a_y} n=ay。因为波导有两块薄板,故: H ‾ 2 s h e e t = K ‾ × n ‾ \overline{H}_{2 sheet}={\overline{K}×\overline{n}} H2sheet=K×n。 由此可得到: K ‾ = n ‾ × H ‾ = H ‾ × a y ‾ \overline{K}=\overline{n}×\overline{H}=\overline{H}×\overline{a_y} K=n×H=H×

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值